首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3623篇
  免费   193篇
  3816篇
  2023年   10篇
  2022年   21篇
  2021年   57篇
  2020年   24篇
  2019年   21篇
  2018年   56篇
  2017年   46篇
  2016年   70篇
  2015年   140篇
  2014年   162篇
  2013年   236篇
  2012年   261篇
  2011年   272篇
  2010年   156篇
  2009年   161篇
  2008年   245篇
  2007年   270篇
  2006年   241篇
  2005年   213篇
  2004年   227篇
  2003年   231篇
  2002年   225篇
  2001年   24篇
  2000年   29篇
  1999年   34篇
  1998年   40篇
  1997年   37篇
  1996年   27篇
  1995年   35篇
  1994年   23篇
  1993年   22篇
  1992年   27篇
  1991年   19篇
  1990年   33篇
  1989年   18篇
  1988年   12篇
  1987年   9篇
  1986年   6篇
  1985年   12篇
  1984年   12篇
  1983年   7篇
  1982年   8篇
  1981年   12篇
  1980年   5篇
  1979年   2篇
  1975年   3篇
  1974年   4篇
  1973年   2篇
  1959年   1篇
  1958年   2篇
排序方式: 共有3816条查询结果,搜索用时 0 毫秒
31.
32.
The importance of the 2′-hydroxyl and 2-amino groups of guanosine residues for the catalytic efficiency of a hammerhead ribozyme has been investigated. The three guanosines in the central core of a hammerhead ribozyme were replaced by deoxyinosine, inosine, and deoxyguanosine, and ribozymes containing these analogues were chemically synthesized. Most of the modified ribozymes are drastically descreased in their cleavage efficiency. However. deletion of the 2-amino group at G8 (replacement with inosine, deoxyguanosine, deoxyinosine) caused little alteration in the catalytic activity relative to that obtained with the unmodified ribozyme. Whereas, deletion of the 2′-amino group at G12 and G5 (replacement with inosine, deoxyinosine, and deoxyguanosine) resulted in ribozymes with drastic decrease in the catalytic activity relative to that obtained with the unmodified ribozyme. In contrast, two uridine residues, U7 and U4, in the ribozyne sequence were replaced by deoxyuridine (dU). The dU4 complex resulted in a decrease in the catalytic rate, with relative cleavage activity that ws about half that observed for the native complex. By comparison, the dU7 complex exhibited a relative cleavage activity within 3.3-fold of that observed with native ribozyme/substrate complex. This result suggests that the 2′-hydroxyl group at U 7 is not essential for activity.

The importance of the 2′-hydroxyl, and 2-amino groups of guanosine residues for the catalytic efficiency of a hammerhead roibozyme has been investigated. Most of the modified rybozymes are drastically decreased in their cleavage efficiency. However, deletion of the 2-amino group at G8 or deletion of the 2′-hydroxyl group at G12 caused little alteration in the catalytic activity relative to that obtained with the unmodified ribozyme. In contrast, two uridine residues, U7 and U4, in the ribozyme sequence were replaced by deoxyuridine (dU). The U4 complex resulted in a decrease in the catalytic rate, with relative cleavage activity that was about half that observed for the native complex.  相似文献   

33.
34.
We previously isolated Streptomyces racemochromogenes strain 10-3, which produces a phospholipase D (PLD) with high transphosphatidylation activity. Here, we purified and cloned the PLD (PLD103) from the strain. PLD103 exerted the highest hydrolytic activity at a slightly alkaline pH, which is in contrast to the majority of known Streptomyces PLDs that have a slightly acidic optimum pH. PLD103 shares only 71–76% amino acid sequence identity with other Streptomyces PLDs that have a slightly acidic optimum pH; thus, the diversity in the primary structure might explain the discrepancy observed in the optimum pH. The purified PLD displayed high transphosphatidylation activity in the presence of glycerol, l-serine, and 2-aminoethanol hydrochloride with a conversion rate of 82–97% in a simple one-phase system, which was comparable to the rate of other Streptomyces PLDs in a complicated biphasic system.  相似文献   
35.
Recently, two novel mammalian aquaporins (AQPs), AQPs 11 and 12, have been identified and classified as members of a new AQP subfamily, the "subcellular AQPs". In members of this subfamily one of the two asparagine-proline-alanine (NPA) motifs, which play a crucial role in selective water conduction, are not completely conserved. Mouse AQP11 (mAQP11) was expressed in Sf9 cells and purified using the detergent Fos-choline 10. The protein was reconstituted into liposomes, which were used for water conduction studies with a stopped-flow device. Single water permeability (pf) of AQP11 was measured to be 1.72+/-0.03x10(-13) cm(3)/s, suggesting that other members of the subfamily with incompletely conserved NPA motifs may also function as water channels.  相似文献   
36.
Electrochemical analysis of lignin peroxidase (LiP) was performed using a pyrolytic graphite electrode coated with peroxidase-embedded tributylmethyl phosphonium chloride membrane. The formal redox potential of ferric/ferrous couples of LiP was −126 mV (versus SHE), which was comparable with that of manganese peroxidase (MnP) and horseradish peroxidase (HRP). Yet, only LiP is capable of oxidizing non-phenolic substrates with a high redox potential. Since with decreasing pH, the redox potential increased, an incredibly low pH optimum of LiP as peroxidase at 3.0 or lower was proposed as the clue to explain LiP mechanisms. A low pH might be the key for LiP to possess a high redox potential. The pKa values for the distal His in peroxidases were calculated using redox data and the Nernst equation, to be 5.8 for LiP, 4.7 for MnP, and 3.8 for HRP. A high pKa value of the distal His might be crucial for LiP compound II to uptake a proton from the solvent. As a result, LiP is able to complete its catalytic cycle during the oxidation of non-proton-donating substrates. In compensation, LiP has diminished its reactivity toward hydrogen peroxide.  相似文献   
37.
The S138A substitution of fusion inhibitory peptides derived from the C-terminal heptad repeat (C-HR) of the human immunodeficiency virus type 1 (HIV-1) gp41 leads to enhanced binding affinity to the N-terminal heptad repeat (N-HR). As such, these peptides exhibit highly potent anti-HIV-1 activity. X-ray crystallographic analysis was performed to understand the effect of the substitution on binding affinity. The comparison of the native and S138A crystal structures indicated that the increase in the hydrophobicity of the S138A substitution may aid the stabilization of the N-HR/C-HR complex through additional hydrophobic contacts. Free-energy calculations suggest that the difference between the desolvation free energies of the C-HR-derived peptides with and without the S138A mutation dominates the observed difference in anti-HIV-1 activity.  相似文献   
38.
39.
Endothelin (ET)-1 is a potent inducer of peptic ulcers. The roles of ET-1 in ulcer healing, however, have remained unclear, and these were investigated in mice. Gastric ulcers were induced in mice by serosal application of acetic acid. Three days later, mice were given a neutralizing ET-1 antibody or nonimmunized serum. The ulcer size, amount of fibrosis and myofibroblasts, and localization of ET-1 and ET(A/B) receptors were analyzed. To elucidate the mechanisms underlying the effects of ET-1, we examined the proliferation, migration, and release of growth and angiogenic factors in gastric myofibroblasts with or without ET-1. The expression of prepro-ET-1 (an ET-1 precursor) and ET-converting enzyme-1 was examined in gastric myofibroblasts using RT-PCR. Immunoneutralization of ET-1 delayed gastric ulcer healing. The areas of fibrosis and myofibroblasts were smaller in the anti-ET-1 antibody group than in the control. ET-1 was expressed in the gastric epithelium, myofibroblasts, and other cell types. ET(A) receptors, but not ET(B) receptors, were present in myofibroblasts. ET-1 increased proliferation and migration of gastric myofibroblasts. ET-1 stimulated the release of hepatocyte growth factor, VEGF, PGE(2), and IL-6 from gastric myofibroblasts. mRNA for prepro-ET-1 and ET-converting enzyme-1 was also expressed. ET-1 promotes the accumulation of gastric myofibroblasts and collagen fibrils at gastric ulcers. ET-1 also stimulates migration and proliferation of gastric myofibroblasts and enhances the release of growth factors, angiogenic factors, and PGE(2). Thus ET-1 has important roles not only in ulcer formation but also in ulcer healing via mobilizing myofibroblasts and inducing production of stroma-derived factors.  相似文献   
40.
The aim of this study was to investigate the effects of salinomycin (SL) and feeding on whole body glucose kinetics in sheep fed a high-concentrate diet (25% orchardgrass hay and 75% commercial concentrate). Four adult sheep were fed the diet with or without 20 mg x kg(-1) diet of SL once daily for each 3 wk. The rates of glucose entry and utilization were determined before and during 3 h after feeding using a [ (13)C(6)] glucose dilution approach. Ruminal characteristics and concentrations of blood volatile fatty acids (VFA) and plasma glucose and insulin were also measured. Metabolizable energy intake was unaffected (P = 0.22) with SL. Salinomycin decreased (P = 0.06) the ratio of acetate to propionate in rumen fluid. Salinomycin increased (P = 0.01) both rates of entry and utilization of glucose, but did not affect (P > 0.10) concentrations of blood VFA or plasma glucose or insulin. Feeding caused gradual increases in concentrations of blood acetate (P < 0.01) and propionate (P = 0.01), a transient increase in plasma insulin concentration (P = 0.05), a transient decrease in plasma glucose concentration (P < 0.01), and persistent increases in both rates of glucose entry (P < 0.01) and utilization (P < 0.01). No SL x feeding interaction was observed (P > 0.10) on any measurements. We conclude that SL and feeding would have an additive effect on both rates of glucose entry and utilization without modifications with SL to feeding responses of peripheral concentrations of blood VFA, plasma glucose and insulin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号