首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13579篇
  免费   714篇
  国内免费   4篇
  2021年   162篇
  2020年   73篇
  2019年   99篇
  2018年   167篇
  2017年   146篇
  2016年   213篇
  2015年   360篇
  2014年   428篇
  2013年   825篇
  2012年   745篇
  2011年   704篇
  2010年   441篇
  2009年   446篇
  2008年   694篇
  2007年   697篇
  2006年   681篇
  2005年   614篇
  2004年   631篇
  2003年   658篇
  2002年   597篇
  2001年   437篇
  2000年   436篇
  1999年   371篇
  1998年   179篇
  1997年   145篇
  1996年   111篇
  1995年   117篇
  1994年   99篇
  1993年   107篇
  1992年   268篇
  1991年   265篇
  1990年   229篇
  1989年   197篇
  1988年   194篇
  1987年   165篇
  1986年   154篇
  1985年   157篇
  1984年   132篇
  1983年   114篇
  1982年   97篇
  1981年   70篇
  1980年   62篇
  1979年   92篇
  1978年   85篇
  1977年   62篇
  1976年   58篇
  1975年   52篇
  1974年   46篇
  1973年   60篇
  1970年   50篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
31.
This study reports on the findings from a WHO sponsored cross-national investigation of life events and schizophrenia. Data are presented from a series of 386 acutely ill schizophrenic patients selected from nine field research centers located in developing and developed countries (Aarhus, Denmark; Agra, India; Cali, Colombia; Chandigarh, India; Honolulu, USA; Ibadan, Nigeria; Nagasaki, Japan; Prague, Czechoslovakia; Rochester, USA). On a methodological level, the study demonstrates that life event methodologies originating in the developed countries can be adapted for international studies and may be used to collect reasonably reliable and comparable cross-cultural data on psychosocial factors affecting the course of schizophrenic disorders. Substantive findings replicate the results of prior studies which conclude that socioenvironmental stressors may precipitate schizophrenic attacks and such events tend to cluster in the two to three week period immediately preceding illness onset.The paper was prepared by these authors on behalf of the collaborating investigators listed on page 196.  相似文献   
32.
Temperature-sensitive (ts) mutants of rat 3Y1 fibroblasts representing four separate complementation groups (3Y1tsD123, 3Y1tsF121, 3Y1tsG125, and 3Y1tsH203) are arrested mainly in the G1 phase when cells of randomly proliferating population at 33.8 degrees C are shifted to 39.8 degrees C (temperature arrest). We examined the time lag of the cellular entry into the S phase after release at 33.8 degrees C, both from the temperature arrest and from the arrest at 33.8 degrees C at a confluent cell density (density arrest). In the temperature-arrested cells, as the duration of temperature arrest increased, the time lag of entry into S phase after shift down to 33.8 degrees C was prolonged, in all four mutants. These observations suggest that the four different functional lesions, each causing arrest in the G1 phase, are also responsible for prolongation of the time lag of entry into the S phase in cells arrested in the G1 phase. The prolongation of the time lag in the temperature-arrested cultures was accelerated at a higher cell density, in medium supplemented with a lower concentration of serum, and at a higher restrictive temperature. In the density-arrested cells, as the duration of pre-exposure to 39.8 degrees C was increased, the time lag of entry into S phase at 33.8 degrees C after release from the arrest was drastically prolonged, in all four mutants. In 3Y1tsF121, 3Y1tsG125, and 3Y1tsH203, when the density-arrested cells were prestimulated by serum at 39.8 degrees C for various periods of time, the time lag of entry into S phase after release from the density arrest at 33.8 degrees C was initially shortened, and then, prolonged progressively as the period of prestimulation increased. These findings, taken together with other data, show that all four ts defects affect cells in states ranging from the deeper resting to mid- or late-G1 phase. It is suggested that events represented by these four mutants are required for entry into the S phase and normally operate in parallel but not in sequence in cells in states ranging from the deeper resting to the mid- or late-G1 phases, though they may affect each other.  相似文献   
33.
A cDNA clone encoding the human motilin precursor was isolated from an intestinal library using synthetic oligonucleotide probes. The predicted amino acid sequence indicates that the motilin precursor consists of 115 amino acids and includes a 25-residue N-terminal signal peptide followed by the 22-amino-acid motilin sequence and a long, 68-residue C-terminal peptide. The amino acid sequence of human motilin predicted from the cDNA sequence is identical to its porcine counterpart, which has been determined by protein sequencing. Proteolytic processing of promotilin to motilin occurs at the sequence, Lys-Lys, this being the first reported instance of processing occurring at a pair of Lys residues. In other precursors it occurs at Lys-Arg, Arg-Arg, Arg, or very rarely Lys.  相似文献   
34.
Two distinct DNA ligases from Drosophila melanogaster embryos   总被引:5,自引:0,他引:5  
M Takahashi  M Senshu 《FEBS letters》1987,213(2):345-352
Embryos of Drosophila melanogaster contain two distinct DNA ligases (DNA ligase I and II). DNA ligase I was eluted at 0.2 M KCl and DNA ligase II at 0.6 M KCl on phosphocellulose column chromatography. The former was rich in early developing embryos and its activity decreased during embryonic development. The latter was found constantly throughout the developing stages of embryos. DNA ligase I existed in a cytoplasmic fraction and DNA ligase II is concentrated in nuclei. Both enzymes ligate 5'-phosphoryl and 3'-hydroxyl groups in oligo(dT) in the presence of poly(dA). DNA ligase II is also able to join oligo(dT)(poly(rA). Both enzymes require ATP and Mg2+ for activity. The Km for ATP is 2.7 X 10(-6) M for DNA ligase I, and 3.0 X 10(-5) M for DNA ligase II. DNA ligase I requires dithiothreitol and polyvinyl alcohol, but DNA ligase II does not. Both enzymes are inhibited in the presence of N-ethylmaleimide. DNA ligase I is active at a low salt concentration (0-30 mM KCl), but DNA ligase II is active at high salt concentrations (50-100 mM). DNA ligase I is more labile than DNA ligase II. The molecular masses of DNA ligase-AMP adducts were determined as 86 and 75 kDa for DNA ligase I, and as 70 (major protein) and 90 kDa (minor protein) for DNA ligase II under denaturing conditions. A sedimentation coefficient of 4.2 S was observed for DNA ligase II. Consequently, Drosophila DNA ligase I and II are quite similar to mammalian DNA ligase I and II. Drosophila DNA ligase I and a DNA ligase by B.A. Rabin et al. [(1986) J. Biol. Chem. 261, 10637-10645] seem to be the same enzyme.  相似文献   
35.
2',3'-Cyclic-nucleotide 3'-phosphodiesterase (EC 3.1.4.37) has been widely used as a marker for myelin-oligodendrocytes in the central nervous system. Evidence has been provided that the enzyme is identical with one of the Wolfgram proteins of central nervous system myelin. The amino acid sequence of bovine 2',3'-cyclic-nucleotide 3'-phosphodiesterase was determined by both protein and cDNA sequence analyses. Protein sequence analysis was done on bovine elastase 2',3'-cyclic-nucleotide 3'-phosphodiesterase, a low molecular weight enzyme obtained by solubilization with pancreatic elastase (EC 3.4.21.36) (Nishizawa, Y., Kurihara, T., and Takahashi, Y. (1980) Biochem. J. 191, 71-82; Kurihara, T., Nishizawa, Y., Takahashi, Y., and Odani, S. (1981) Biochem. J. 195, 153-157). Based on the carboxyl-terminal sequence of bovine elastase 2',3'-cyclic-nucleotide 3'-phosphodiesterase, synthetic oligodeoxyribonucleotides were prepared and used as probes for screening a cDNA library of bovine brain. A cDNA of 2305 base pairs was obtained and sequenced, and the complete amino acid sequence of bovine 2',3'-cyclic-nucleotide 3'-phosphodiesterase was deduced. Bovine 2',3'-cyclic-nucleotide 3'-phosphodiesterase deduced contains 400 amino acids including initiation methionine and has a molecular weight of 44,850. Bovine elastase 2',3'-cyclic-nucleotide 3'-phosphodiesterase corresponds to the 236 amino acids of bovine 2',3'-cyclic-nucleotide 3'-phosphodiesterase. RNA blot analysis revealed a single-species mRNA of about 2600 bases.  相似文献   
36.
Quantitative study of tissue collagen metabolism   总被引:3,自引:0,他引:3  
A procedure for the quantification of various parameters of metabolism of collagen in fibrotic mouse liver has been developed. The method involves derivatization of hydroxyproline, a marker of collagen, with dansyl chloride, high-performance liquid chromatography of the derivative on an octadecyl C-18 column, and its detection by fluorescence. This assay improves upon existing procedures in several respects: It extends the analysis so that not only the collagen content of the tissue but also the metabolism of collagen is determined at levels found intracellularly. It is sensitive enough to quantify 0.1-10 nmol of hydroxyproline, and it includes three major amino acids (hydroxyproline, glycine, and proline) of collagen and two assay controls; it generates information on both the purity and quantity of collagen in each assay. The determination of specific activity of intracellular free [14C]proline, which is the precursor of protein-bound hydroxyproline, defines the specific activity of [14C]hydroxyproline of collagen converted from precursor residues of [14C]proline by the action of prolyl hydroxylase. The specific activity of [14C]hydroxyproline can be used for the evaluation of collagen synthesis and secretion and intracellular and extracellular degradation of the newly synthesized and secreted collagen in the tissue. The determination of specific activities of [14C]hydroxyproline and [14C]proline and of the ratio of [14C]hydroxyproline to [14C]proline of newly secreted collagen provides information concerning the extent of hydroxylation of [14C]proline residues of newly synthesized collagen.  相似文献   
37.
A pulse-generating machine which delivers exponentially decaying pulses over broad range of pulse lengths was used to determine the optimum pulse conditions for gene transfer to FM3A cells. In the transformation of tk- cells with pTK1, a single pulse of 100-2000 microseconds gave a high transformation frequency at 1.5-6 kV/cm and room temperature, the highest transformation frequency obtained being 3 X 10(-3). As the suspension buffer for cells exposed to the pulse, Saline G was better than PBS(-) for obtaining a large number of transformants because it ensured high cell viability.  相似文献   
38.
39.
Resting spore formation during short time-scale upwelling and its significance were investigated in the field and by a simple theoretical model. Field observations of spore formation ofLeptocylindrus danicus were made off Izu Peninsula, Japan. A rapid increase in ratio of resting spore to vegetative cell numbers indicated thatL. danicus formed resting spores quickly as a response to nutrient depletion in the upwelled water, although only a very low number of resting spores was found in the upwelling. A simple model was constructed to investigate the possible advantages of spore formation during short time-scale upwelling. This showed that there is a critical time-scale for resting spore formation to be advantageous. The nutrient depletion period of the upwelling off Izu was shorter than the critical time-scale determined by the model. Rapid-sinking of resting spores may increase further the critical time-scale, unless spores return with upwelling water. For short time-scale upwelling, the vegetative cell may be better suited than the resting spore for enduring a short period of nutrient depletion. Contribution from Shimoda Marine Research Center, University of Tsukuba, No. 475.  相似文献   
40.
Methyl iodide (MeI), a very weak mutagen, induced the adaptive response in E. coli to a similar extent to those induced by potently mutagenic methylating agents. MeI potentiated the mutagenicity of a methylating mutagen, N-methyl-N-nitrosourea, by its co-treatment. These results might give indication that MeI directly methylates O6-methylguanine-DNA methyltransferase resulting in induction of the adaptive response and depletion of the repair capacity of enzyme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号