首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3735篇
  免费   209篇
  2023年   12篇
  2022年   23篇
  2021年   61篇
  2020年   24篇
  2019年   24篇
  2018年   58篇
  2017年   49篇
  2016年   72篇
  2015年   149篇
  2014年   170篇
  2013年   244篇
  2012年   266篇
  2011年   276篇
  2010年   161篇
  2009年   163篇
  2008年   252篇
  2007年   273篇
  2006年   245篇
  2005年   217篇
  2004年   231篇
  2003年   236篇
  2002年   226篇
  2001年   31篇
  2000年   32篇
  1999年   37篇
  1998年   40篇
  1997年   37篇
  1996年   28篇
  1995年   36篇
  1994年   24篇
  1993年   22篇
  1992年   29篇
  1991年   22篇
  1990年   34篇
  1989年   19篇
  1988年   13篇
  1987年   11篇
  1986年   8篇
  1985年   12篇
  1984年   14篇
  1983年   8篇
  1982年   9篇
  1981年   13篇
  1980年   5篇
  1979年   3篇
  1978年   4篇
  1976年   3篇
  1975年   4篇
  1974年   4篇
  1958年   2篇
排序方式: 共有3944条查询结果,搜索用时 15 毫秒
991.
Prostaglandins (PGs) have been shown to play various roles in adipogenesis. In this study, we investigated on which PGE receptor subtypes are involved in the inhibition of 3T3-L1 preadipocyte differentiation. The triglyceride content of cells, used as an index of differentiation, was decreased when PGE(2), the FP-agonist fluprostenol or dibutyryl cAMP, was exogenously added to differentiation cocktails. 3T3-L1 preadipocyte cells express mRNAs for the prostanoid EP4, FP, and IP receptors. PGE(2) and the EP4 agonist AE1-329 increased cAMP levels in preadipocytes in a dose-dependent manner. AE1-329 suppressed the expression induction of differentiation marker genes such as resistin and peroxisome proliferator-activated receptor-gamma. The inhibitory effect of PGE(2) but not that of fluprostenol was reversed by the addition of the EP4 antagonist AE3-208. AE3-208 mimicked the differentiation-promoting effects of indomethacin. These results suggest that the EP4 receptor mediates the suppressive action of PGE(2) in 3T3-L1 adipocyte differentiation.  相似文献   
992.
We reported previously that angiopoietin-like protein3 (ANGPTL3), a liver-specific secretory factor, increased plasma triglyceride (TG) via inhibition of lipoprotein lipase and free fatty acid (FFA) by activating adipose-lipolysis. The current study examined the regulation of Angptl3 by leptin and insulin, both of which are key players in the metabolic syndrome. Angptl3 expression and plasma ANGPTL3 levels were increased in leptin-resistant C57BL/6J(db/db) and -deficient C57BL/6J(ob/ob) mice, relative to the control. Leptin supplements decreased Angptl3 gene expression and plasma ANGPTL3 in C57BL/6J(ob/ob) mice. The changes of Angptl3 were associated with alterations of plasma TG and FFA levels. Leptin treatment directly suppressed Angptl3 gene expression in hepatocytes. Angptl3 gene expression and plasma protein levels were also increased in insulin-deficient streptozotocin-treated mice. Insulin treatment of hepatocytes decreased Angptl3 gene expression and protein secretion. Our results suggest that elevated ANGPTL3 by leptin- or insulin-resistance is attributed to increased plasma TG and FFA concentrations in obesity.  相似文献   
993.
994.
Rho family GTPases regulate multiple cellular processes through their downstream effectors, where their activities are stimulated by the guanine nucleotide exchange factors. Here, we report a new member of RhoGEF, WGEF, which has the classical structure of DH-PH domain and a C-terminal SH3 domain. WGEF was shown to activate RhoA, Cdc42, and Rac1 by pulldown assay, and forced expression of WGEF resulted in marked rearrangement of the actin cytoskeleton, which is typically seen by the activation of RhoA, Cdc42, and Rac1. WGEF was highly expressed in intestine and also in liver, heart and kidney, which may suggest the involvement of WGEF in the development and functions of these organs. The expression pattern may also suggest the possible importance of WGEF in the understanding of diseases based on metabolic disorder.  相似文献   
995.
Pex19p is a peroxin involved in peroxisomal membrane biogenesis and probably functions as a chaperone and/or soluble receptor specific for cargo peroxisomal membrane proteins (PMPs). To elucidate the functional constituents of Pex19p in terms of the protein structure, we investigated its domain architecture and binding affinity toward various PMPs and peroxins. The human Pex19p cDNA was overexpressed in Escherichia coli, and a highly purified sample of the Pex19p protein was prepared. When PMP22 was synthesized by cell-free translation in the presence of Pex19p, the PMP22 bound to Pex19p was soluble, whereas PMP22 alone was insoluble. This observation shows that Pex19p plays a role in capturing PMP and maintaining its solubility. In a similar manner, Pex19p was bound to PMP70 and Pex16p as well as the Pex3p soluble fragment. Limited proteolysis analyses revealed that Pex19p consists of the C-terminal core domain flanking the flexible N-terminal region. Separation of Pex19p into its N- and C-terminal halves abolished interactions with PMP22, PMP70, and Pex16p. In contrast, the flexible N-terminal half of Pex19p was bound to the Pex3p soluble fragment, suggesting that the binding mode of Pex3p toward Pex19p differs from that of other PMPs. This idea is supported by our detection of the Pex19p-Pex3p-PMP22 ternary complex.  相似文献   
996.
An antibiotic, D-cycloserine (DCS), inhibits the catalytic activities of alanine racemase (ALR) and d-alanyl-d-alanine ligase (DDL), which are necessary for the biosynthesis of the bacterial cell wall. In this study, we cloned both genes encoding ALR and DDL, designated alrS and ddlS, respectively, from DCS-producing Streptomyces lavendulae ATCC25233. Each gene product was purified to homogeneity and characterized. Escherichia coli, transformed with a pET vector carrying alrS or ddlS, displays higher resistance to DCS than the same host carrying the E. coli ALR- or DDL-encoded gene inserted into the pET vector. Although the S. lavendulae DDL was competitively inhibited by DCS, the K(i) value (920 microM) was obviously higher (40 approximately 100-fold) than those for E. coli DdlA (9 microM) or DdlB (27 microM). The high K(i) value of the S. lavendulae DDL suggests that the enzyme may be a self-resistance determinant in the DCS-producing microorganism. Kinetic studies for the S. lavendulae ALR suggest that the time-dependent inactivation rate of the enzyme by DCS is absolutely slower than that of the E. coli ALR. We conclude that ALR from DCS-producing S. lavendulae is also one of the self-resistance determinants.  相似文献   
997.
We report the selective catalytic cleavage of the HIV coat protein gp120, a B cell superantigen, by IgM antibodies (Abs) from uninfected humans and mice that had not been previously exposed to gp120. The rate of IgM-catalyzed gp120 cleavage was greater than of other polypeptide substrates, including the bacterial superantigen protein A. The kinetic parameters of gp120 cleavage varied over a broad range depending on the source of the IgMs, and turnover numbers as great as 2.1/min were observed, suggesting that different Abs possess distinct gp120 recognition properties. IgG Abs failed to cleave gp120 detectably. The Fab fragment of a monoclonal IgM cleaved gp120, suggesting that the catalytic activity belongs to the antibody combining site. The electrophoretic profile of gp120 incubated with a monoclonal human IgM suggested hydrolysis at several sites. One of the cleavage sites was identified as the Lys(432)-Ala(433) peptide bond, located within the region thought to be the Ab-recognizable superantigenic determinant. A covalently reactive peptide analog (CRA) corresponding to gp120 residues 421-431 with a C-terminal amidino phosphonate diester mimetic of the Lys(432)-Ala(433) bond was employed to probe IgM nucleophilic reactivity. The peptidyl CRA inhibited the IgM-catalyzed cleavage of gp120 and formed covalent IgM adducts at levels exceeding a control hapten CRA devoid of the peptide sequence. These observations suggest that IgMs can selectively cleave gp120 by a nucleophilic mechanism and raise the possibility of their role as defense enzymes.  相似文献   
998.
Gankyrin is a 25-kDa hepatocellular carcinoma-associated protein that mediates protein-protein interactions in cell cycle control and protein degradation. It has been reported to form complexes with cyclin-dependent kinase 4, retinoblastoma protein, the S6b ATPase subunit of the 19 S regulator of the 26 S proteasome, and Mdm2, an E3 ubiquitin ligase involved in p53 degradation. It is the first protein described to bind both to the 26 S proteasome and to proteins in other complexes containing cyclin-dependent kinase(s) and p53 ubiquitylating activities, thus providing a mechanism for delivering cell cycle regulating machinery and ubiquitylated substrates to the proteasome for degradation. Gankyrin contains a 33-residue motif known as the ankyrin repeat that occurs five and a half to six times in the sequence. As a step toward understanding gankyrin interactions with its protein partners we have determined its three-dimensional crystal structure to 2.0-A resolution. It reveals that the entire 226-residue gankyrin polypeptide folds into seven ankyrin repeat elements. The ankyrin repeats, consisting of an antiparallel beta-hairpin followed by a perpendicularly oriented helix-loop-helix, pack side-by-side, creating an extended curved structure with a groove running across the long concave surface. Comparison with the structures of other ankyrin repeat proteins suggests that interactions with partner proteins are mediated by residues situated on this concave surface.  相似文献   
999.
1000.
It is known that denervation of rat skeletal muscle causes atrophy and this is often adopted as a model for human muscle atrophy. To understand the molecular changes that occur, it is important to identify the profiles of differential gene expression. In the present study, we investigated differentially expressed genes in denervated muscle using DNA microarrays with printed genes preferentially expressed in skeletal muscle. We found that several genes are differentially expressed. Of these genes, ARPP-16/19 (cAMP-regulated phosphoprotein 16/19) is selectively enhanced after denervation. The expression of ARPP-16/19 in denervated muscles starts to increase from two days after denervation surgery. On the other hand, the expression of ARPP-16/19 does not change in hind-limb suspended muscles, such as EDL and soleus muscles. These results suggest that the increase in ARPP-16/19 mRNA expression is regulated by unknown factor(s) secreted from nerves, and not by electrical muscle activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号