首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3826篇
  免费   203篇
  4029篇
  2023年   10篇
  2022年   22篇
  2021年   59篇
  2020年   26篇
  2019年   21篇
  2018年   58篇
  2017年   48篇
  2016年   72篇
  2015年   143篇
  2014年   162篇
  2013年   241篇
  2012年   261篇
  2011年   281篇
  2010年   158篇
  2009年   167篇
  2008年   249篇
  2007年   275篇
  2006年   245篇
  2005年   217篇
  2004年   232篇
  2003年   241篇
  2002年   241篇
  2001年   35篇
  2000年   39篇
  1999年   41篇
  1998年   41篇
  1997年   39篇
  1996年   30篇
  1995年   38篇
  1994年   25篇
  1993年   23篇
  1992年   34篇
  1991年   28篇
  1990年   39篇
  1989年   26篇
  1988年   16篇
  1987年   14篇
  1986年   10篇
  1985年   19篇
  1984年   19篇
  1983年   9篇
  1982年   10篇
  1981年   17篇
  1980年   6篇
  1978年   5篇
  1976年   3篇
  1975年   4篇
  1974年   6篇
  1968年   3篇
  1967年   4篇
排序方式: 共有4029条查询结果,搜索用时 15 毫秒
11.
Complement C7 is one of the components of membrane attack complex (MAC) generated by the terminal complement cascade. C7 protein is polymorphic and most of its polymorphisms have been identified using isoelectric focusing (IEF), which detects protein charge differences. To date, the molecular bases of the polymorphisms detected by IEF have not been determined. In this paper, we describe the structural bases of two C7 IEF-detected polymorphisms, C7*3 and C7*4, both of which are common in Asian populations. C7*3 resulted from substitution of cysteine (Cys) at amino acid residue 106 by charged arginine (Arg; C106R), while charged lysine (Lys) at amino acid residue 398 was replaced by neutral glutamine (Gln; K398Q) in C7*4. As C7*3 is hypomorphic, it is important to study its possible associations with diseases such as immunological disorders and infections. We present genetic bases for this C7 polymorphism, which we determined using polymerase chain reaction (PCR)-based genotyping, a simple and accurate method suitable for large-scale studies.  相似文献   
12.
Acetyl-CoA carboxylases (ACCs), the rate limiting enzymes in de novo lipid synthesis, play important roles in modulating energy metabolism. The inhibition of ACC has demonstrated promising therapeutic potential for treating obesity and type 2 diabetes mellitus in transgenic mice and preclinical animal models. We describe herein the synthesis and structure–activity relationships of a series of disubstituted (4-piperidinyl)-piperazine derivatives as a new platform for ACC1/2 non-selective inhibitors.  相似文献   
13.
14.
Primary biliary cirrhosis is characterized by autoreactive T cells specific for the mitochondrial Ag PDC-E2(163-176). We studied the ability of eight T cell clones (TCC) specific for PDC-E2(163-176) to proliferate or become anergic in the presence of costimulation signals. TCC were stimulated with either human PDC-E2(163-176), an Escherichia coli 2-oxoglutarate dehydrogenase mimic (OGDC-E2(34-47)), or analogs with amino acid substitutions using HLA-matched allogeneic PBMC or mouse L-DR53 fibroblasts as APC. Based on their differential responses to these peptides (human PDC-E2(163-176), E. coli OGDC-E2(34-47)) in the different APC systems, TCC were classified as costimulation dependent or independent. Only costimulation-dependent TCC could become anergic. TCC with costimulation-dependent responses to OGDC-E2 become anergic to PDC-E2 when preincubated with mimic, even if costimulation is independent for PDC-E2(163-176). Anergic TCC produced IL-10. One selected TCC could not become anergic after preincubation with PDC-E2(163-176)-pulsed L-DR53 but became anergic using L-DR53 pulsed with PDC-E2 peptide analogs with a substitution at a critical TCR binding site. TCC that only respond to peptide-pulsed PBMC, but not L-DR53, proliferate with peptide-pulsed CD80/CD86-transfected L-DR53; however, anergy was not induced with peptide-pulsed L-DR53 transfected with only CD80 or CD86. These data highlight that costimulation plays a dominant role in maintaining peripheral tolerance to PBC-specific Ags. They further suggest that, under specific circumstances, molecular mimicry of an autoantigen may restore rather than break peripheral tolerance.  相似文献   
15.

Background

Cardioembolic stroke generally results in more severe disability, since it typically has a larger ischemic area than the other types of ischemic stroke. However, it is difficult to differentiate cardioembolic stroke from non-cardioembolic stroke (atherothrombotic stroke and lacunar stroke). In this study, we evaluated the levels of plasma brain natriuretic peptide in acute ischemic stroke patients with cardioembolic stroke or non-cardioembolic stroke, and assessed the prediction factors of plasma brain natriuretic peptide and whether we could differentiate between stroke subtypes on the basis of plasma brain natriuretic peptide concentrations in addition to patient's clinical variables.

Methods

Our patient cohort consisted of 131 consecutive patients with acute cerebral infarction who were admitted to Kagawa University School of Medicine Hospital from January 1, 2005 to December 31, 2007. The mean age of patients (43 females, 88 males) was 69.6 ± 10.1 years. Sixty-two patients had cardioembolic stroke; the remaining 69 patients had non-cardioembolic stroke (including atherothrombotic stroke, lacunar stroke, or the other). Clinical variables and the plasma brain natriuretic peptide were evaluated in all patients.

Results

Plasma brain natriuretic peptide was linearly associated with atrial fibrillation, heart failure, chronic renal failure, and left atrial diameter, independently (F4,126 = 27.6, p < 0.0001; adjusted R2 = 0.45). Furthermore, atrial fibrillation, mitral regurgitation, plasma brain natriuretic peptide (> 77 pg/ml), and left atrial diameter (> 36 mm) were statistically significant independent predictors of cardioembolic stroke in the multivariable setting (Χ2 = 127.5, p < 0.001).

Conclusion

It was suggested that cardioembolic stroke was strongly predicted with atrial fibrillation and plasma brain natriuretic peptide. Plasma brain natriuretic peptide can be a surrogate marker for cardioembolic stroke.  相似文献   
16.
17.
18.
It has been suggested that a suppression of maximal voluntary contraction (MVC) induced by prolonged vibration is due to an attenuation of Ia afferent activity. The purpose of the present study was to test the hypothesis that aftereffects following prolonged vibration on muscle activity during MVC differ among plantar flexor synergists owing to a supposed difference in muscle fiber composition. The plantar flexion MVC torque and surface electromyogram (EMG) of the medial head of gastrocnemius (MG), the lateral head of gastrocnemius (LG), and the soleus (Sol) were recorded in 13 subjects before and after prolonged vibration applied to the Achilles tendon at 100 Hz for 30 min. The maximal H reflexes and M waves were also determined from the three muscles, and the ratio between H reflexes and M waves (H/Mmax) was calculated before and after the vibration. The MVC torque was decreased by 16.6 +/- 3.7% after the vibration (P < 0.05; ANOVA). The H/Mmax also decreased for all three muscles, indicating that Ia afferent activity was successfully attenuated by the vibration in all plantar flexors. However, a reduction of EMG during MVC was observed only in MG (12.7 +/- 4.0%) and LG (11.4 +/- 3.9%) (P < 0.05; ANOVA), not in Sol (3.4 +/- 3.0%). These results demonstrated that prolonged vibration-induced MVC suppression was attributable mainly to the reduction of muscle activity in MG and LG, both of which have a larger proportion of fast-twitch muscle fibers than Sol. This finding suggests that Ia-afferent activity that reinforces the recruitment of high-threshold motor units is necessary to enhance force exertion during MVC.  相似文献   
19.
Vif is a primate lentiviral accessory protein that is crucial for viral infectivity. Vif counteracts the antiviral activity of host deaminases such as APOBEC3G and APOBEC3F. We now report a novel function of African green monkey simian immunodeficiency virus (SIVagm) Vif that promotes replication of SIVagm in human cells lacking detectable deaminase activity. We found that cyclophilin A (CypA) was excluded from wild-type SIV particles but was efficiently packaged into vif-deficient SIVagm virions. The presence of CypA in vif-defective SIVagm was correlated with reduced viral replication. Infection of CypA knockout Jurkat cells or treatment of Jurkat cells with cyclosporine A eliminated the Vif-sensitive inhibition and resulted in replication profiles that were similar for wild-type and vif-deficient SIVagm. Importantly, the inhibitory effect of CypA was restricted to virus-producing cells and was TRIM5alpha independent. The abilities of SIVagm Vif to inhibit encapsidation of CypA and to increase viral infectivity were shared by rhesus macaque SIV Vif and thus seem to be general properties of SIV Vif proteins. Exclusion of CypA from SIVagm particles was not associated with intracellular degradation, suggesting a mode of Vif action distinct from that proposed for APOBEC3G. This is the first report of a novel vif-sensitive antiviral activity of human CypA that may limit zoonotic transmission of SIV and the first demonstration of CypA encapsidation into a virus other than human immunodeficiency virus type 1.  相似文献   
20.
We examined whether ANG II and TNF-alpha cooperatively induce vascular inflammation using the expression of monocyte chemoattractant protein (MCP)-1 as a marker of vascular inflammation. ANG II and TNF-alpha stimulated MCP-1 expression in a synergistic manner in vascular smooth muscle cells. ANG II-induced MCP-1 expression was potently inhibited to a nonstimulated basal level by blockade of the p38-dependent pathway but only partially inhibited by blockade of the NF-kappaB-dependent pathway. In contrast, TNF-alpha-induced MCP-1 expression was potently suppressed by blockade of NF-kappaB activation but only modestly suppressed by blockade of p38 activation. ANG II- and TNF-alpha-induced activation of NF-kappaB- and p38-dependent pathways was partially inhibited by pharmacological inhibitors of ROS production. Furthermore, ANG II- and TNF-alpha-stimulated MCP-1 expression was partially suppressed by ROS inhibitors. We also examined whether endogenous ANG II and TNF-alpha cooperatively promote vascular inflammation in vivo using a wire injury model of the rat femoral artery. Blockade of both ANG II and TNF-alpha further suppressed neointimal formation, macrophage infiltration, and MCP-1 expression in an additive manner compared with blockade of ANG II or TNF-alpha alone. These results suggested that ANG II and TNF-alpha synergistically stimulate MCP-1 expression via the utilization of distinct intracellular signaling pathways (p38- and NFkappaB-dependent pathways) and that these pathways are activated in ROS-dependent and -independent manners. These results also suggest that ANG II and TNF-alpha cooperatively stimulate vascular inflammation in vivo as well as in vitro.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号