首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2781篇
  免费   136篇
  国内免费   2篇
  2919篇
  2022年   21篇
  2021年   37篇
  2020年   17篇
  2019年   31篇
  2018年   31篇
  2017年   33篇
  2016年   49篇
  2015年   94篇
  2014年   92篇
  2013年   135篇
  2012年   142篇
  2011年   165篇
  2010年   99篇
  2009年   75篇
  2008年   135篇
  2007年   128篇
  2006年   159篇
  2005年   126篇
  2004年   154篇
  2003年   164篇
  2002年   140篇
  2001年   65篇
  2000年   52篇
  1999年   61篇
  1998年   43篇
  1997年   32篇
  1996年   31篇
  1995年   30篇
  1994年   22篇
  1993年   15篇
  1992年   41篇
  1991年   37篇
  1990年   40篇
  1989年   39篇
  1988年   46篇
  1987年   41篇
  1986年   30篇
  1985年   30篇
  1984年   21篇
  1983年   29篇
  1982年   26篇
  1981年   11篇
  1980年   14篇
  1979年   15篇
  1978年   13篇
  1977年   19篇
  1976年   14篇
  1975年   15篇
  1974年   11篇
  1972年   7篇
排序方式: 共有2919条查询结果,搜索用时 15 毫秒
91.
Detachment of anchorage-dependent normal epithelial cells from their substratum causes the type of apoptosis known as anoikis, whereas malignant cells can proliferate independently of anchorage. Because src and ras oncogenes are activated in many human cancers, we investigated their role and downstream signaling pathways in anoikis resistance, using HAG-1 human epithelial cells transfected with v-src or activated H-ras. Consequently, anchorage-dependent mock- or ras-transfected cells underwent anoikis. In contrast, anchorage-independent v-Src-transformed cells did not exhibit such apoptotic features. Focal adhesion kinase (FAK), a transducer of integrin, was only activated in v-Src-transformed cells. Herbimycin A, an Src kinase inhibitor, reduced tyrosyl phosphorylation of FAK and reversed resistance to anoikis. However, both protein kinase C (PKC) and phophatidylinositol-3 (PI-3) kinase inhibitors failed to induce anoikis. These data suggest that the ability of activated Src to prevent anoikis may be mediated by Src to a downstream signaling pathway involving FAK, but not Ras, PI-3 kinase, or PKC.  相似文献   
92.
Human melanocytes respond to UV irradiation by increasing the synthesis of melanin. While much is now understood of the pathways governing this process and the nature of the melanin synthesized, little is known of melanins produced by lower vertebrates and their capacity to respond to UV. Here we report that a fish, red seabream, can undergo ‘suntanning’. Histological, colorimetric and chemical assays were performed for suntanned red seabream fish bred in net cages to analyse the melanins and compared with shaded or wild red seabream fish. For color evaluation, the L* values of suntanned fish were dramatically lower than those in the other two groups. Pyrrole‐2,3,5‐tricarboxylic acid (PTCA), an indicator of eumelanin, was detected in suntanned fish at five times higher levels than in shaded or wild fish while 4‐amino‐3‐hydroxyphenyl‐alanine (4‐AHP), a marker for pheomelanin, could not be detected in any of the samples. Histological analysis showed that melanocytes in the suntanned skin enlarged and increased in number to form a monolayer at the surface of the skin. Analysis of L* values and PTCA levels showed quite a high correlation coefficient (r = ?0.843). When comparing shaded and wild red seabream fish, the scores were closer but some significant differences were still found in some body areas. These results indicate that eumelanin accumulates in suntanned fish during the increase in skin color, which is induced by sunlight, presumably by ultraviolet radiation.  相似文献   
93.
94.
95.
When U 937 cells, a human histiocytic lymphoma cell line, were cultured with purified lipomodulin for 3 days, morphological and functional differentiation was induced as detected by microscopical examination of Giemsa stained smears, expression of mature monocyte antigen, and antibody dependent cellular cytotoxicity tests. Essentially similar differentiation was observed by the treatment with dexamethasone for 6 days and this differentiation by dexamethasone was blocked by monoclonal anti-lipomodulin antibody. Furthermore, the synthesis of immunoprecipitable lipomodulin in these cells was induced by dexamethasone treatment. These results, taken together, suggest that the induction of lipomodulin synthesis might be the primary event in dexamethasone-induced cellular differentiation of U 937 cells.  相似文献   
96.
We have characterized the molecular properties and membrane behavior of synthetically modified sphingomyelin analogues, modified on the oxygen connecting the phosphocholine group to the ceramide backbone. The oxygen was replaced with an S-atom (S-PSM), an NH-group (NH-PSM) or a CH(2)-group (CH(2)-PSM). Diphenylhexatriene and Laurdan anisotropy experiments showed that an S-linkage increased and NH- and CH(2)-linkages decreased the stability of PSM-analogue bilayer membranes as compared to PSM. When the polarity of the interface was probed using Laurdan, S-PSM appeared to have a lower polarity as compared to PSM whereas NH-PSM and CH(2)-PSM had higher polarities of their respective interfaces. Fluorescence quenching-studies with cholestatrienol showed that all compounds formed SM/cholesterol-rich domains. The S-PSM/cholesterol and PSM/cholesterol domains displayed a similar thermostability, whereas NH-PSM/cholesterol and CH(2)-PSM/cholesterol domains were less thermostable. DSC on vesicles containing the PSM-analogues showed a more complex melting behavior as compared to PSM, whereas equimolar mixtures of the PSM-analogues and PSM showed almost ideal mixing with PSM for NH- and S-PSM. Our data show that the properties of the bond linking the phosphocholine head group to the 1-hydroxyl on the ceramide molecule is important for the stability of SM/SM and SM/cholesterol interactions.  相似文献   
97.
98.
Avian influenza viruses belong to the genus influenza A virus of the family Orthomyxoviridae. The influenza virus consists of eight segmented minus stranded RNA that encode 11 known proteins. Among the 11 viral proteins, NS1 (non-structural protein 1, encoded on segment 8) has been implicated in the regulation of several important intra-cellular functions.In this report, we investigated the functional interaction of NS1 with serine threonine kinase Akt, a core intra-cellular survival regulator. In co-immunoprecipitation assays and GST pull-down assays, NS1 directly interacted with Akt. The interaction was mediated primarily through the Akt-PH (Pleckstrin Homology) domain and the RNA-binding domain of NS1. NS1 preferentially interacted with phosphorylated Akt, but not with non-phosphorylated Akt. Functionally, the NS1-Akt interaction enhanced Akt activity both in the intra-cellular context and in in vitro Akt kinase assays. Confocal microscopic analysis revealed that phosphorylated Akt interacted with NS1 during the interphase of the cell cycle predominantly within the nucleus. Finally, mass spectrometric analysis demonstrated the position at Thr215 of NS1 protein is primary phosphorylation target site through Akt activation. The results together supported the functional importance of influenza virus NS1 with Akt, a core intra-cellular survival regulator.  相似文献   
99.
Tyrosine kinase inhibitors for epidermal growth factor receptor (EGFR-TKIs) are used as molecular targeted therapy for non-small cell lung cancer (NSCLC) patients. The therapy is applied to the patients having EGFR-primary L858R mutation, but drug tolerance caused by EGFR-secondary mutation is occurred within one and half years. For the non-invasive detection of the EGFR-TKIs treatment positive patients by positron emission tomograpy (PET) imagaing, fluorine-18 labeled thienopyrimidine derivative, [18F]FTP2 was newly synthesized. EGFR inhibition assay, cell uptake study, and blocking study indicated [18F]FTP2 binds with high and selective affinity for EGFR with L858R mutation, and not with L858R/T790M dual mutations. On animal PET study using tumor bearing mice, H3255 cells expressing L858R mutated EGFR was more clearly visualized than H1975 cells expressing L858R/T790M dual mutated EGFR. [18F]FTP2 has potential for detecting NSCLC which is susceptible to EGFR-TKI treatment.  相似文献   
100.

Background

Chondroitin sulfate (CS) is a ubiquitous component of the cell surface and extracellular matrix and its sugar backbone consists of repeating disaccharide units: D-glucuronic acid (GlcUA)β1-3N-acetyl-D-galactosamine (GalNAc). Although CS participates in diverse biological processes such as growth factor signaling and the nervous system's development, the mechanism underlying the functions is not well understood.

Methods

CS was isolated from ray fish cartilage, an industrial waste, and its structure and neurite outgrowth-promoting (NOP) activity were analyzed to investigate a potential application to nerve regeneration.

Results

The major disaccharide unit in the CS preparation was GlcUA-GalNAc(6-O-sulfate) (61.9%). Minor proportions of GlcUA-GalNAc(4-O-sulfate) (27.0%), GlcUA(2-O-sulfate)-GalNAc(6-O-sulfate) (8.5%), and GlcUA-GalNAc (2.7%) were also detected. The preparation showed NOP activity in vitro, and this activity was suppressed by antibodies against hepatocyte growth factor (HGF) and its receptor c-Met, suggesting the involvement of the HGF signaling pathway in the expression of the in vitro NOP activity of the CS preparation. The specific binding of HGF to the CS preparation was also demonstrated by surface plasmon resonance spectroscopy.

Conclusions and general significance

The NOP activity of CS from ray cartilage was demonstrated to be expressed through the HGF signaling pathway, suggesting that ray cartilage CS may be useful for studying the cooperative function of CS and HGF.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号