首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   438篇
  免费   46篇
  2022年   4篇
  2021年   5篇
  2020年   2篇
  2018年   6篇
  2017年   3篇
  2016年   5篇
  2015年   7篇
  2014年   5篇
  2013年   14篇
  2012年   15篇
  2011年   17篇
  2010年   12篇
  2009年   11篇
  2008年   15篇
  2007年   16篇
  2006年   24篇
  2005年   21篇
  2004年   31篇
  2003年   22篇
  2002年   24篇
  2001年   31篇
  2000年   21篇
  1999年   20篇
  1998年   9篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1994年   5篇
  1993年   8篇
  1992年   9篇
  1991年   11篇
  1990年   13篇
  1989年   14篇
  1988年   8篇
  1987年   7篇
  1986年   9篇
  1985年   12篇
  1984年   8篇
  1983年   4篇
  1982年   2篇
  1980年   2篇
  1978年   3篇
  1976年   3篇
  1975年   2篇
  1974年   2篇
  1973年   4篇
  1972年   3篇
  1965年   1篇
  1960年   1篇
  1957年   1篇
排序方式: 共有484条查询结果,搜索用时 15 毫秒
431.
CD28 signals contribute to either type 1 or type 2 T cell differentiation. Here, we show that administration of B7.2-Ig fusion proteins to tumor-bearing mice induces tumor regression by promoting the differentiation of antitumor type 2 CD8(+) effector T cells along with IL-4 production. B7.2-Ig-mediated regression was not induced in IL-4(-/-) and STAT6(-/-) mice. However, it was elicited in IFN-gamma(-/-) and STAT4(-/-) mice. By contrast, IL-12-induced tumor regression occurred in IL-4(-/-) and STAT6(-/-) mice, but not in IFN-gamma(-/-) and STAT4(-/-) mice. Moreover, B7.2-Ig treatment was effective in a tumor model not responsive to IL-12. B7.2-Ig administration elicited elevated levels of IL-4 production. Tumor regression was predominantly mediated by CD8(+) T cells, although the induction of these effector cells required CD4(+) T cells. Tumor regression induced by CD8(+) T cells alone was inhibited by neutralizing the IL-4 produced during B7.2-Ig treatment. Thus, these results indicate that stimulation in vivo of CD28 with B7.2-Ig in tumor-bearing mice results in enhanced induction of antitumor type 2 CD8(+) T cells (Tc2) leading to Tc2-mediated tumor regression.  相似文献   
432.
Mouse embryonic stem (mES) cells have the potential to differentiate into all types of cells, but the physiological properties of undifferentiated mES cells, including Ca2+ signaling systems, are not fully understood. In this study, we investigated Ca2+ signaling pathways in mES cells by using confocal Ca2+ imaging systems, patch clamp techniques and RT-PCR. The stimulations with ATP and histamine (His) induced a transient increase of intracellular Ca2+ concentration ([Ca2+]i), which were prevented by the pretreatment of 2-amino-ethoxydiphenyl borate (2-APB), a blocker for inositol-1,4,5-triphosphate receptors (InsP3Rs). The application of caffeine (Caff) or ryanodine (Ry) did not change [Ca2+]i. When stores were depleted with Ca2+ -ATPase blocker, thapsigargin (TG), or histamine, the capacitative Ca2+ entry (CCE) was observed. In whole cell patch clamp mode, store-operated Ca2+ currents could be recorded in cells treated with histamine and thapsigargin. On the other hand, voltage-operated Ca2+ channels (VOCCs) could not be elicited. The application of blockers for plasma membrane Ca2+ pump (PMCAs) (carboxeosin or caloxin2A1) induced a large increase of [Ca2+]i. When the Na+/Ca2+ exchangers (NCXs) were blocked by Na+ free solution or KBR7943, [Ca2+]i was also elevated. Using RT-PCR, mRNAs for InsP3Rs type-1, -2, and -3, PMCA-1 and -4, NCX-1, -2, and -3 could be detected. From these results, we conclude that Ca2+ release from ER is mediated by InsP3Rs in mES cells before differentiation and Ca2+ entry through plasma membrane is mainly mediated by the store-operated Ca2+ channels (SOCs). For the Ca2+ extrusion systems, both NCXs and PMCAs play important roles for maintaining the low level of [Ca2+]i.  相似文献   
433.
Pairing of homologous chromosomes is important for homologous recombination and correct chromosome segregation during meiosis. It has been proposed that telomere clustering, nuclear oscillation, and recombination during meiotic prophase facilitate homologous chromosome pairing in fission yeast. Here we examined the contributions of these chromosomal events to homologous chromosome pairing, by directly observing the dynamics of chromosomal loci in living cells of fission yeast. Homologous loci exhibited a dynamic process of association and dissociation during the time course of meiotic prophase. Lack of nuclear oscillation reduced association frequency for both centromeric and arm regions of the chromosome. Lack of telomere clustering or recombination reduced association frequency at arm regions, but not significantly at centromeric regions. Our results indicate that homologous chromosomes are spatially aligned by oscillation of telomere-bundled chromosomes and physically linked by recombination at chromosome arm regions; this recombination is not required for association of homologous centromeres.  相似文献   
434.
A mixture of two monoterpenes was obtained as the opisthonotal gland secretion from unidentified Histiogaster sp. A096 (Acari: Acaridae), and their structures were elucidated to be (4E)-dehydrocitrals [(2E,4E)- and (2Z,4E)-3,7-dimethyl-2,4,6-octatrienals] by GC/MS, GC/FT-IR, UV and 1H-NMR spectra. Both isomers of (4E)-dehydrocitral prepared by syntheses in 4 steps from 3-methyl-2-butenal with 34.2% yields (based on the ylide) were separated by column chromatography into the (2E,4E)- and (2Z,4E)-3,7-dimethyl-2,4,6-octatrienal. Mass spectra together with GC retention times of the purified natural (4E)-dehydrocitrals were identical with those of synthetic (2E,4E)-3,7-dimethyl-2,4,6-octatrienal and (2Z,4E)-3,7-dimethyl-2,4,6-octatrienal. The geometry at the 2-C position of both synthetic (4E)-dehydrocitrals was confirmed by NOESY analyses. This is the first identification of (4E)-dehydrocitrals from the animal kingdom.  相似文献   
435.
Although hypergastrinemia is frequently observed in individuals with a chronic Helicobacter pylori infection, its pathophysiological significance in gastric mucosal inflammation is unclear. The present study was designed to determine if gastrin induces the expression of CXC chemokines in gastric epithelial cells. Human and rat gastric epithelial cells, transfected with gastrin receptor, were stimulated with gastrin. The expression of mRNAs for human interleukin-8 (IL-8) and rat cytokine-induced neutrophil chemoattractant-1 and release of human IL-8 protein were then determined by Northern blot analysis and ELISA, respectively. Gastrin not only induced the expression of mRNAs for these chemokines but also stimulated IL-8 protein release. A luciferase assay using IL-8 promoter genes showed that nuclear factor (NF)-kappaB is absolutely required and activator protein-1 (AP-1) is partly required for the maximum induction of IL-8 by gastrin. An electrophoretic mobility shift assay revealed that gastrin is capable of activating both NF-kappaB and AP-1. In addition, the inhibition of NF-kappaB abrogated gastrin-induced chemokine expression. These results suggest that gastrin is capable of upregulating CXC chemokines in gastric epithelial cells and therefore may contribute to the progression of the inflammatory process in the stomach.  相似文献   
436.
We characterized four meiotic mutants of the fission yeast Schizosaccharomyces pombe by live observation of nuclear movement. Nuclei were stained with either the DNA-specific fluorescent dye Hoechst 33342 or jellyfish green fluorescent protein (GFP) fused with the N-terminal portion of DNA polymerase α. We first followed nuclear dynamics in wild-type cells to determine the temporal sequence of meiotic events: nuclear fusion in the conjugated zygote is immediately followed by oscillatory nuclear movements that continue for 146 min; then, after coming to rest, the nucleus remains in the center of the cell for 26 min before the first meiotic division. Next we examined nuclear dynamics in four meiotic mutants: mei1 (also called mat2), mei4, dhc1, and taz1. Mei1 and mei4 both arrest during meiotic prophase; our observations, however, show that the timing of mei1 arrest is quite different from that of mei4: the mei1 mutant arrests after nuclear fusion but before starting the oscillatory nuclear movements, while the mei4 mutant arrests after the nucleus has completed the oscillatory movements but before the first meiotic division. We also show examples of the dynamic phenotypes of dhc1 and taz1, both of which complete meiosis but exhibit impaired nuclear movement and reduced frequencies of homologous recombination: the dhc1 mutant exhibits no nuclear movement after nuclear fusion, while the taz1 mutant exhibits severely impaired nuclear movement after nuclear fusion. Received: 28 October 1999; in revised form: 10 December 1999 / Accepted: 13 December 1999  相似文献   
437.
Myristoylated alanine-rich C kinase substrate (MARCKS) is a filamentous actin bundling protein and has multiple sites for phosphorylation, by which the biochemical function is negatively regulated. However, the role of such phosphorylation in physiological functions, particularly in neuronal functions, is not well understood. Using a phosphorylation-site specific antibody, we detected the phosphorylation of MARCKS at Ser159 by various protein kinases. Rho-kinase, protein kinase A, and protein kinase C, could introduce (32)P into human recombinant MARCKS in vitro and the phosphorylation site was confirmed to be the Ser159 residue. In human neuronal teratoma (NT-2) cells, lysophosphatidic acid (LPA) induced MARCKS phosphorylation dose- and time-dependently. This phosphorylation was sensitive to Rho-kinase inhibitor HA1077. However, the phosphorylation induced by PDBu was lesser sensitive. In a skinned NTera-2 cell system, Ca(2+)-independent and GTP gamma S/ATP-stimulated phosphorylation at Ser159 was also sensitive to pre-treatment C3 toxin and HA1077. These findings suggest that the Ser159 residue of MARCKS is a target of LPA-stimulated Rho-kinase in neuronal cells.  相似文献   
438.
Uterine leiomyosarcoma (LMS) is a highly metastatic smooth muscle neoplasm for which calponin h1 is suspected to have a biological role as a tumor-suppressor. We earlier reported that LMP2-null mice spontaneously develop uterine LMS through malignant transformation of the myometrium, thus implicating this protein as an anti-tumorigenic candidate as well. In the present study, we show that LMP2 may negatively regulate LMS independently of its role in the proteasome. Moreover, several lines of evidence indicate that although calponin h1 does not directly influence tumorigenesis, it clearly affects LMP2-induced cellular morphological changes. Modulation of LMP2 may lead to new therapeutic approaches in human uterine LMS.  相似文献   
439.
Reactive oxygen species (ROS) produced by NADPH oxidases play critical roles in signalling and development. Given the high toxicity of ROS, their production is tightly regulated. In Arabidopsis, respiratory burst oxidase homologue F (AtrbohF) encodes NADPH oxidase. Here we characterised the activation of AtRbohF using a heterologous expression system. AtRbohF exhibited ROS-producing activity that was synergistically activated by protein phosphorylation and Ca2+. The two EF-hand motifs of AtRbohF in the N-terminal cytosolic region were crucial for its Ca2+-dependent activation. AtrbohD and AtrbohF are involved in stress responses. Although the activation mechanisms for AtRbohD and AtRbohF were similar, AtRbohD had significantly greater ROS-producing activity than AtRbohF, which may reflect their functional diversity, at least in part. We further characterised the interrelationship between Ca2+ and phosphorylation regarding activation and found that protein phosphorylation-induced activation was independent of Ca2+. In contrast, K-252a, a protein kinase inhibitor, inhibited the Ca2+-dependent ROS-producing activity of AtRbohD and AtRbohF in a dose-dependent manner, suggesting that protein phosphorylation is a prerequisite for the Ca2+-dependent activation of Rboh. Positive feedback regulation of Ca2+ and ROS through AtRbohC has been proposed to play a critical role in root hair tip growth. Our findings suggest that Rboh phosphorylation is the initial trigger for the plant Ca2+-ROS signalling network.  相似文献   
440.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号