首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5207篇
  免费   302篇
  国内免费   2篇
  2022年   21篇
  2021年   45篇
  2020年   31篇
  2019年   40篇
  2018年   62篇
  2017年   49篇
  2016年   71篇
  2015年   136篇
  2014年   156篇
  2013年   311篇
  2012年   322篇
  2011年   300篇
  2010年   192篇
  2009年   165篇
  2008年   312篇
  2007年   313篇
  2006年   296篇
  2005年   308篇
  2004年   295篇
  2003年   318篇
  2002年   343篇
  2001年   109篇
  2000年   110篇
  1999年   89篇
  1998年   103篇
  1997年   70篇
  1996年   62篇
  1995年   71篇
  1994年   51篇
  1993年   50篇
  1992年   73篇
  1991年   82篇
  1990年   52篇
  1989年   54篇
  1988年   37篇
  1987年   38篇
  1986年   24篇
  1985年   35篇
  1984年   33篇
  1983年   27篇
  1982年   29篇
  1981年   30篇
  1980年   16篇
  1979年   21篇
  1978年   20篇
  1977年   19篇
  1976年   21篇
  1975年   15篇
  1973年   13篇
  1971年   16篇
排序方式: 共有5511条查询结果,搜索用时 359 毫秒
991.
The lung collectin surfactant protein A (SP-A) has been implicated in the regulation of pulmonary host defense and inflammation. Zymosan induces proinflammatory cytokines in immune cells. Toll-like receptor (TLR)2 has been shown to be involved in zymosan-induced signaling. We first investigated the interaction of TLR2 with zymosan. Zymosan cosedimented the soluble form of rTLR2 possessing the putative extracellular domain (sTLR2). sTLR2 directly bound to zymosan with an apparent binding constant of 48 nM. We next examined whether SP-A modulated zymosan-induced cellular responses. SP-A significantly attenuated zymosan-induced TNF-alpha secretion in RAW264.7 cells and alveolar macrophages in a concentration-dependent manner. Although zymosan failed to cosediment SP-A, SP-A significantly reduced zymosan-elicited NF-kappaB activation in TLR2-transfected human embryonic kidney 293 cells. Because we have shown that SP-A binds to sTLR2, we also examined whether SP-A affected the binding of sTLR2 to zymosan. SP-A significantly attenuated the direct binding of sTLR2 to zymosan in a concentration-dependent fashion. From these results, we conclude that 1) TLR2 directly binds zymosan, 2) SP-A can alter zymosan-TLR2 interaction, and 3) SP-A down-regulates TLR2-mediated signaling and TNF-alpha secretion stimulated by zymosan. This study supports an important role of SP-A in controlling pulmonary inflammation caused by microbial pathogens.  相似文献   
992.
Group X secretory phospholipase A2 (sPLA2-X) and cytosolic phospholipase A2 alpha (cPLA2alpha) are involved in the release of arachidonic acid (AA) from membrane phospholipids linked to the eicosanoid production in various pathological states. Recent studies have indicated the presence of various types of cross-talk between sPLA2s and cPLA2alpha resulting in effective AA release. Here we examined the dependence of sPLA2-X-induced potent AA release on the cPLA2alpha activation by using specific cPLA2alpha or sPLA2 inhibitors as well as cPLA2alpha-deficient mice. We found that Pyrrophenone, a cPLA2alpha-specific inhibitor, did not suppress the sPLA2-X-induced potent AA release and prostaglandin E2 formation in mouse spleen cells. Furthermore, the amount of AA released by sPLA2-X from spleen cells was not significantly altered by cPLA2alpha deficiency. These results suggest that sPLA2-X induces potent AA release without activation of cPLA2a, which might be relevant to eicosanoid production in some pathological states where cPLA2a is not activated.  相似文献   
993.
Aquaporin adipose (AQPap), which we identified from human adipose tissue, is a glycerol channel in adipocyte [Kishida et al. (2000) J. Biol. Chem. 275, 20896-20902]. In the current study, we determined the genomic structure of the human AQPap gene, and identified three AQPap-like genes that resembled (approximately 95%) AQPap, with little expression in human tissues. The AQPap promoter contained a putative peroxisome proliferator response element (PPRE) at -46 to -62, and a putative insulin response element (IRE) at -542/-536. Deletion of the PPRE abolished the pioglitazone-mediated induction of AQPap promoter activity in 3T3-L1 adipocytes. Deletion and single base pair substitution analysis of the IRE abolished the insulin-mediated suppression of the human AQPap gene. Analysis of AQPap sequence in human subjects revealed three missense mutations (R12C, V59L and G264V), and two silent mutations (A103A and G250G). The cRNA injection of the missense mutants into Xenopus oocytes revealed the absence of the activity to transport glycerol and water in the AQPap-G264V protein. In the subject homozygous for AQPap-G264V, exercise-induced increase in plasma glycerol was not observed in spite of the increased plasma noradrenaline. We suggest that AQPap is responsible for the increase of plasma glycerol during exercise in humans.  相似文献   
994.
IgA nephropathy (IgAN), major cause of kidney failure worldwide, is common in Asians, moderately prevalent in Europeans, and rare in Africans. It is not known if these differences represent variation in genes, environment, or ascertainment. In a recent GWAS, we localized five IgAN susceptibility loci on Chr.6p21 (HLA-DQB1/DRB1, PSMB9/TAP1, and DPA1/DPB2 loci), Chr.1q32 (CFHR3/R1 locus), and Chr.22q12 (HORMAD2 locus). These IgAN loci are associated with risk of other immune-mediated disorders such as type I diabetes, multiple sclerosis, or inflammatory bowel disease. We tested association of these loci in eight new independent cohorts of Asian, European, and African-American ancestry (N = 4,789), followed by meta-analysis with risk-score modeling in 12 cohorts (N = 10,755) and geospatial analysis in 85 world populations. Four susceptibility loci robustly replicated and all five loci were genome-wide significant in the combined cohort (P = 5×10−32–3×10−10), with heterogeneity detected only at the PSMB9/TAP1 locus (I2 = 0.60). Conditional analyses identified two new independent risk alleles within the HLA-DQB1/DRB1 locus, defining multiple risk and protective haplotypes within this interval. We also detected a significant genetic interaction, whereby the odds ratio for the HORMAD2 protective allele was reversed in homozygotes for a CFHR3/R1 deletion (P = 2.5×10−4). A seven–SNP genetic risk score, which explained 4.7% of overall IgAN risk, increased sharply with Eastward and Northward distance from Africa (r = 0.30, P = 3×10−128). This model paralleled the known East–West gradient in disease risk. Moreover, the prediction of a South–North axis was confirmed by registry data showing that the prevalence of IgAN–attributable kidney failure is increased in Northern Europe, similar to multiple sclerosis and type I diabetes. Variation at IgAN susceptibility loci correlates with differences in disease prevalence among world populations. These findings inform genetic, biological, and epidemiological investigations of IgAN and permit cross-comparison with other complex traits that share genetic risk loci and geographic patterns with IgAN.  相似文献   
995.
996.
Most cases of medulloblastoma (MB) occur in young children. While the overall survival rate can be relatively high, current treatments combining surgery, chemo‐ and radiotherapy are very destructive for patient development and quality of life. Moreover, aggressive forms and recurrences of MB cannot be controlled by classical therapies. Therefore, new therapeutic approaches yielding good efficacy and low toxicity for healthy tissues are required to improve patient outcome. Cancer cells sustain their proliferation by optimizing their nutrient uptake capacities. The L‐type amino acid transporter 1 (LAT1) is an essential amino acid carrier overexpressed in aggressive human cancers that was described as a potential therapeutic target. In this study, we investigated the therapeutic potential of JPH203, a LAT1‐specific pharmacological inhibitor, on two independent MB cell lines belonging to subgroups 3 (HD‐MB03) and Shh (DAOY). We show that while displaying low toxicity towards normal cerebral cells, JPH203 disrupts AA homeostasis, mTORC1 activity, proliferation and survival in MB cells. Moreover, we demonstrate that a long‐term treatment with JPH203 does not lead to resistance in MB cells. Therefore, this study suggests that targeting LAT1 with JPH203 is a promising therapeutic approach for MB treatment.  相似文献   
997.
Tumor necrosis factor (TNF)-α is a potent proinflammatory cytokine involved in the pathogenesis of diabetic neuropathy. We inactivated TNF-α to determine if it is a valid therapeutic target for the treatment of diabetic neuropathy. We effected the inactivation in diabetic neuropathy using two approaches: by genetic inactivation of TNF-α (TNF-α(-/-) mice) or by neutralization of TNF-α protein using the monoclonal antibody infliximab. We induced diabetes using streptozotocin in wild-type and TNF-α(-/-) mice. We measured serum TNF-α concentration and the level of TNF-α mRNA in the dorsal root ganglion (DRG) and evaluated nerve function by a combination of motor (MNCV) and sensory (SNCV) nerve conduction velocities and tail flick test, as well as cytological analysis of intraepidermal nerve fiber density (IENFD) and immunostaining of DRG for NF-κB p65 serine-276 phosphorylated and cleaved caspase-3. Compared with nondiabetic mice, TNF-α(+/+) diabetic mice displayed significant impairments of MNCV, SNCV, tail flick test, and IENFD as well as increased expression of NF-κB p65 and cleaved caspase-3 in their DRG. In contrast, although nondiabetic TNF-α(-/-) mice showed mild abnormalities of IENFD under basal conditions, diabetic TNF-α(-/-) mice showed no evidence of abnormal nerve function tests compared with nondiabetic mice. A single injection of infliximab in diabetic TNF-α(+/+) mice led to suppression of the increased serum TNF-α and amelioration of the electrophysiological and biochemical deficits for at least 4 wk. Moreover, the increased TNF-α mRNA expression in diabetic DRG was also attenuated by infliximab, suggesting infliximab's effects may involve the local suppression of TNF-α. Infliximab, an agent currently in clinical use, is effective in targeting TNF-α action and expression and amelioration of diabetic neuropathy in mice.  相似文献   
998.
It has been clear that cancer-associated fibroblasts (CAFs) in the tumor microenvironment play an important role in pancreatic ductal adenocarcinoma (PDAC) progression. However, how CAFs relate to the patients’ prognosis and the effects of chemoradiation therapy (CRT) has not been fully investigated. Tissue microarrays (TMAs) representing 167 resected PDACs without preoperative treatment were used for immunohistochemical studies (IHC) of palladin, α-smooth muscle actin (SMA), and podoplanin. Correlations between the expression levels of these markers and clinicopathological findings were analyzed statistically. Whole sections of surgical specimens from PDACs with and without preoperative CRT, designated as the chemotherapy-first group (CF, n = 19) and the surgery-first group (SF, n = 21), respectively, were also analyzed by IHC. In TMAs, the disease-specific survival rate (DSS) at 5 years for all 167 cases was 23.1%. Seventy cases (41.9%) were positive for palladin and had significantly lower DSS (p = 0.0430). α-SMA and podoplanin were positive in 167 cases (100%) and 131 cases (78.4%), respectively, and they were not significantly associated with DSS. On multivariable analysis, palladin expression was an independent poor prognostic factor (p = 0.0243, risk ratio 1.60). In the whole section study, palladin positivity was significantly lower (p = 0.0037) in the CF group (5/19) with a significantly better DSS (p = 0.0144) than in the SF group (16/22), suggesting that stromal palladin expression is a surrogate indicator of the treatment effect after chemoradiation therapy.  相似文献   
999.
Sonic hedgehog (SHH) and its signaling have been identified in several human cancers, and increased levels of its expression appear to correlate with disease progression and metastasis. However, the role of SHH in bone destruction associated with oral squamous cell carcinomas is still unclear. In this study we analyzed SHH expression and the role played by SHH signaling in gingival carcinoma-induced jawbone destruction. From an analysis of surgically resected lower gingival squamous cell carcinoma mandible samples, we found that SHH was highly expressed in tumor cells that had invaded the bone matrix. On the other hand, the hedgehog receptor Patched and the signaling molecule Gli-2 were highly expressed in the osteoclasts and the progenitor cells. SHH stimulated osteoclast formation and pit formation in the presence of the receptor activator for nuclear factor-κB ligand (RANKL) in CD11b+ mouse bone marrow cells. SHH upregulated phosphorylation of ERK1/2 and p38 MAPK, NFATc1, tartrate-resistant acid phosphatase (TRAP), and Cathepsin K expression in RAW264.7 cells. Our results suggest that tumor-derived SHH stimulated the osteoclast formation and bone resorption in the tumor jawbone microenvironment.  相似文献   
1000.
Recovery from weight loss after stress is important for all organisms, although the recovery mechanisms are not fully understood. We are working to clarify these mechanisms. Here, we recorded enhanced feeding activity of Drosophila melanogaster larvae from 2 to 4 h after heat stress at 35°C for 1 h. During the post‐stress period, expression levels of sweet taste gustatory receptor genes (Grs), Gr5a, Gr43a, Gr64a, and Gr64f, were elevated, whereas bitter taste Grs, Gr66a, and Gr33a, were decreased in expression and expression of a non‐typical taste receptor Gr, Gr68a, was unchanged. Similar upregulation of Gr5a and downregulation of Gr66a was recorded after cold stress at 4°C. Expression levels of tropomyosin and ATP synthase ß subunit were significantly increased in larval mouth parts around 3 to 5 h after the heat stress. We infer that up‐regulation of post‐stress larval feeding activity, and weight recovery, is mediated by increasing capacity for mouth part muscular movements and changes in taste sensing physiology. We propose that Drosophila larvae, and likely insects generally, express an efficient mechanism to recover from weight loss during post‐stress periods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号