首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   318篇
  免费   9篇
  327篇
  2022年   2篇
  2021年   4篇
  2020年   2篇
  2019年   4篇
  2018年   4篇
  2017年   2篇
  2016年   3篇
  2015年   7篇
  2014年   14篇
  2013年   24篇
  2012年   11篇
  2011年   14篇
  2010年   7篇
  2009年   12篇
  2008年   13篇
  2007年   8篇
  2006年   12篇
  2005年   14篇
  2004年   8篇
  2003年   17篇
  2002年   15篇
  2001年   9篇
  2000年   8篇
  1999年   10篇
  1998年   6篇
  1997年   4篇
  1996年   7篇
  1995年   8篇
  1994年   6篇
  1993年   6篇
  1992年   9篇
  1991年   3篇
  1990年   10篇
  1989年   6篇
  1988年   6篇
  1987年   3篇
  1986年   5篇
  1985年   4篇
  1984年   3篇
  1983年   3篇
  1982年   1篇
  1981年   5篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1969年   1篇
  1966年   1篇
排序方式: 共有327条查询结果,搜索用时 15 毫秒
31.

Background  

Pasteurella pneumotropica is a ubiquitous bacterium that is frequently isolated from laboratory rodents and causes various clinical symptoms in immunodeficient animals. Currently two RTX toxins, PnxIA and PnxIIA, which are similar to hemolysin-like high-molecular-weight exoproteins are known in this species. In this study, we identified and analyzed a further RTX toxin named PnxIIIA and the corresponding type I secretion system.  相似文献   
32.
The effect of various sulfated glycosaminoglycans on glycoconjugates syntheses in synovial membranes of rabbit knee joints in culture was investigated by two different approaches. In the first approach, synovial membranes isolated from rabbit knee joints were cultured in the presence of sulfated glycosaminoglycans and [14C]glucosamine. In the second approach, solutions of sulfated glycosaminoglycans were injected into rabbit knee joints and synovial membranes isolated from the joints were cultured in the presence of [14C]glucosamine. The major part of [14C]glucosamine-labeled glycoconjugates associated with the synovial membranes and secreted into culture medium was hyaluronic acid. Of the natural glycosaminoglycans tested, dermatan sulfate gave the maximum stimulation of hyaluronic acid synthesis followed by chondroitin 4- and 6-sulfate. Heparin, heparan sulfate, keratan sulfate, keratan polysulfate, and hyaluronic acid had no significant effect. Of the chemically polysulfated glycosaminoglycans, GAGPS (a persulfated derivative of chondroitin sulfate) gave high stimulation but N-acetylchitosan 3,6-disulfate had no effect. The effect of sulfated glycosaminoglycans on hyaluronic acid synthesis was the same in both experimental approaches. The increase in the amount of secreted hyaluronic acid in culture medium paralleled that in synovial membranes. The results indicate that the galactosamine-containing sulfated glycosaminoglycans have a specific stimulatory effect on hyaluronic acid synthesis. A high degree of sulfation of the molecules appeared to potentiate the stimulatory effect.  相似文献   
33.
Infection and chronic inflammation are proposed to contribute to carcinogenesis through inflammation-related mechanisms. Infection with hepatitis C virus, Helicobacter pylori and the liver fluke, Opisthorchis viverrini (OV), are important risk factors for hepatocellular carcinoma (HCC), gastric cancer and cholangiocarcinoma, respectively. Inflammatory bowel diseases (IBDs) and oral diseases, such as oral lichen planus (OLP) and leukoplakia, are associated with colon carcinogenesis and oral squamous cell carcinoma (OSCC), respectively. We performed a double immunofluorescence labeling study and found that nitrative and oxidative DNA lesion products, 8-nitroguanine and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), were formed and inducible nitric oxide synthase (iNOS) was expressed in epithelial cells and inflammatory cells at the site of carcinogenesis in humans and animal models. Antibacterial, antiviral and antiparasitic drugs dramatically diminished the formation of these DNA lesion markers and iNOS expression. These results suggest that oxidative and nitrative DNA damage occurs at the sites of carcinogenesis, regardless of etiology. Therefore, it is considered that excessive amounts of reactive nitrogen species produced via iNOS during chronic inflammation may play a key role in carcinogenesis by causing DNA damage. On the basis of our results, we propose that 8-nitroguanine is a promising biomarker to evaluate the potential risk of inflammation-mediated carcinogenesis.  相似文献   
34.
The investigation of two Ferreyanthus species afforded seven germacranolides which have not been isolated previously. Two derivatives of linalol were also present. The structures were elucidated by spectroscopic methods. Chemotaxonomic relationships are briefly discussed.  相似文献   
35.
Tyramine (TA), a biogenic amine, attenuates intracellular cAMP production by acting on its receptor in insects. Several non-biogenic amines were examined for their actions on native and heterologously expressed silkworm TA receptors. 5-(4-Hydroxyphenyl)oxazole, which showed an attenuating effect on cAMP production in silkworm-head membranes, did not attenuate forskolin-stimulated cAMP production in HEK-293 cells expressing the silkworm TA receptor, although the compound bound to the cloned receptor. 2-Phenylethylamines (2-PEAs), which showed positive and negative effects on cAMP production in silkworm-head membranes, inhibited [3H]TA binding to the cloned TA receptor. 2-Chloro-2-(4-chlorophenyl)ethylamine was the most potent inhibitor of [3H]TA binding among the 2-PEAs tested, with an IC50 of 30.4 nM. This compound acted as an antagonist and abolished TA-attenuation of forskolin-stimulated cAMP production in the cloned TA receptor. The discrepancy in the effects of the non-biogenic amines on the native and cloned TA receptors remains to be further examined. A newly synthesized 2-PEA, 2-chloro-2-(4-hydroxyphenyl)ethylamine, attenuated forskolin-stimulated cAMP production in the cloned TA receptor, indicating that the para-hydroxy group is important for the agonist action.  相似文献   
36.
Ethylbenzene is carcinogenic to rats and mice, while it has no mutagenic activity. We have investigated whether ethylbenzene undergoes metabolic activation, leading to DNA damage. Ethylbenzene was metabolized to 1-phenylethanol, acetophenone, 2-ethylphenol and 4-ethylphenol by rat liver microsomes. Furthermore, 2-ethylphenol and 4-ethylphenol were metabolically transformed to ring-dihydroxylated metabolites such as ethylhydroquinone and 4-ethylcatechol, respectively. Experiment with 32P-labeled DNA fragment revealed that both ethylhydroquinone and 4-ethylcatechol caused DNA damage in the presence of Cu(II). These dihydroxylated compounds also induced the formation of 8-oxo-7,8-dihydro-2′-deoxyguanosine in calf thymus DNA in the presence of Cu(II). Catalase, methional and Cu(I)-specific chelator, bathocuproine, significantly (P < 0.05) inhibited oxidative DNA damage, whereas free hydroxyl radical scavenger and superoxide dismutase did not. These results suggest that Cu(I) and H2O2 produced via oxidation of ethylhydroquinone and 4-ethylcatechol are involved in oxidative DNA damage. Addition of an endogenous reductant NADH dramatically enhanced 4-ethylcatechol-induced oxidative DNA damage, whereas ethylhydroquinone-induced DNA damage was slightly enhanced. Enhancing effect of NADH on oxidative DNA damage by 4-ethylcatechol may be explained by assuming that reactive species are generated from the redox cycle. In conclusion, these active dihydroxylated metabolites would be involved in the mechanism of carcinogenesis by ethylbenzene.  相似文献   
37.
A total of 52 isolates of Pasteurella pneumotropica obtained from rodents were examined for their genetic heterogeneity. On the basis of DNA restriction analysis, including amplified 16S ribosomal DNA restriction analysis (ARDRA) and pulsed-field gel electrophoresis (PFGE), differences were identified among the isolates. ARDRA typing with Hae III revealed 4 different banding patterns of the P. pneumotropica isolates. Eighty-two percent of the 23 isolates identified as a-1 were derived from mice, whereas all the isolates identified as a-3 were derived from rats. Most of the isolates, which showed hemolytic activity on blood agar, obtained from mice and rats, were identified as a-2 and a-4, respectively. By restriction analysis of genomic DNA, Apa I and Not I digestion differentiated 9 variants and an undiscriminating group. However, no close relation with regard to the phenotypic characteristics was observed among the variants. The isolates identified as a-2 and a-4 could not be distinguished by PFGE analysis. DNA restriction analysis revealed that the genetic diversity of the P. pneumotropica isolates was more complex than the phenotypic characteristics among the species, and that at least the P. pneumotropica isolates were clearly differentiated into 4 groups by ARDRA typing with Hae III.  相似文献   
38.
8-Nitroguanine formation in oral leukoplakia, a premalignant lesion.   总被引:2,自引:0,他引:2  
Oral leukoplakia is a premalignant lesion associated with development of oral cancer. To clarify the mechanism of development of oral carcinogenesis from leukoplakia, we examined DNA damage in oral epithelium of biopsy specimens of patients with leukoplakia by immunohistochemical methods. Histological changes, such as epithelial dysplasia and infiltration of inflammatory cells were observed in oral tissues of leukoplakia patients. A double immunofluorescence labeling study demonstrated that the accumulation of mutagenic 8-nitroguanine, an indicator of nitrative DNA damage, and 8-oxo-7,8-dihydro-2'-deoxyguanosine, an indicator of oxidative DNA damage, was apparently observed in the oral epithelium of patients with leukoplakia, whereas little or no immunoreactivity was observed in normal oral mucosa. Expression of inducible nitric oxide synthase (iNOS) was also observed in oral epithelium of leukoplakia patients. Immunoreactivity of 3-nitrotyrosine, an indicator of nitrative stress, was observed in oral epithelial cells and colocalized with 8-nitroguanine. Moreover, proliferating cell nuclear antigen and p53 were expressed in 8-nitroguanine-positive epithelial cells in the basal layer. These results suggest that iNOS-mediated nitrative stress contributes to development of oral carcinogenesis from leukoplakia through DNA damage as well as oxidative stress.  相似文献   
39.

Background  

In the post-genome era, most research scientists working in the field of proteomics are confronted with difficulties in management of large volumes of data, which they are required to keep in formats suitable for subsequent data mining. Therefore, a well-developed open source laboratory information management system (LIMS) should be available for their proteomics research studies.  相似文献   
40.
Carbonylation is an irreversible and irreparable protein modification induced by oxidative stress. Cholangiocarcinoma (CCA) is associated with chronic inflammation caused by liver fluke infection. To investigate the relationship between protein carbonylation and CCA progression, carbonylated proteins were detected by 2D OxyBlot and identified by MALDI-TOF/TOF analyses in pooled CCA tissues in comparison to adjacent nontumor tissues and normal liver tissues. We identified 14 highly carbonylated proteins in CCA tissues. Immunoprecipitation and Western blot analyses of individual samples confirmed significantly greater carbonylation of serotransferrin, heat shock protein 70-kDa protein 1 (HSP70.1), and α1-antitrypsin (A1AT) in tumor tissues compared to normal tissues. The oxidative modification of these proteins was significantly associated with poor prognoses as determined by the Kaplan-Meier method. LC-MALDI-TOF/TOF mass spectrometry identified R50, K327, and P357 as carbonylated sites in serotransferrin, HSP70.1, and A1AT, respectively. Moreover, iron accumulation was significantly higher in CCA tissues with, compared to those without, carbonylated serotransferrin. We conclude that carbonylated serotransferrin-associated iron accumulation may induce oxidative stress via the Fenton reaction, and the carbonylation of HSP70.1 with antioxidative property and A1AT with protease inhibitory capacity may cause them to become dysfunctional, leading to CCA progression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号