首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1279篇
  免费   163篇
  2022年   5篇
  2021年   23篇
  2020年   5篇
  2019年   11篇
  2018年   20篇
  2017年   13篇
  2016年   19篇
  2015年   34篇
  2014年   55篇
  2013年   50篇
  2012年   64篇
  2011年   56篇
  2010年   39篇
  2009年   36篇
  2008年   61篇
  2007年   67篇
  2006年   80篇
  2005年   60篇
  2004年   77篇
  2003年   65篇
  2002年   56篇
  2001年   67篇
  2000年   59篇
  1999年   48篇
  1998年   22篇
  1997年   13篇
  1996年   15篇
  1995年   23篇
  1994年   22篇
  1993年   12篇
  1992年   35篇
  1991年   24篇
  1990年   30篇
  1989年   22篇
  1988年   14篇
  1987年   13篇
  1986年   9篇
  1985年   12篇
  1984年   10篇
  1983年   6篇
  1982年   9篇
  1981年   8篇
  1980年   5篇
  1979年   11篇
  1978年   9篇
  1977年   13篇
  1974年   4篇
  1973年   4篇
  1971年   5篇
  1969年   4篇
排序方式: 共有1442条查询结果,搜索用时 31 毫秒
991.
Influenza and human parainfluenza virus infections are of both medical and economical importance. Currently, inactivated vaccines provide suboptimal protection against influenza, and vaccines for human parainfluenza virus infection are not available, underscoring the need for new vaccines against these respiratory diseases. Furthermore, to reduce the burden of vaccination, the development of multivalent vaccines is highly desirable. Thus, to devise a single vaccine that would elicit immune responses against both influenza and parainfluenza viruses, we used reverse genetics to generate an influenza A virus that possesses the coding region for the hemagglutinin/neuraminidase ectodomain of parainfluenza virus instead of the influenza virus neuraminidase. The recombinant virus grew efficiently in eggs but was attenuated in mice. When intranasally immunized with the recombinant vaccine, all mice developed antibodies against both influenza and parainfluenza viruses and survived an otherwise lethal challenge with either of these viruses. This live bivalent vaccine has obvious advantages over combination vaccines, and its method of generation could, in principle, be applied in the development of a "cocktail" vaccine with efficacy against several different infectious diseases.  相似文献   
992.
The main anticancer action of doxorubicin (DOX) is believed to be due to topoisomerase II inhibition and free radical generation. Our previous study has demonstrated that TAS-103, a topoisomerase inhibitor, induces apoptosis through DNA cleavage and subsequent H(2)O(2) generation mediated by NAD(P)H oxidase activation [H. Mizutani et al. J. Biol. Chem. 277 (2002) 30684-30689]. Therefore, to clarify whether DOX functions as an anticancer drug through the same mechanism or not, we investigated the mechanism of apoptosis induced by DOX in the human leukemia cell line HL-60 and the H(2)O(2)-resistant sub-clone, HP100. DOX-induced DNA ladder formation could be detected in HL-60 cells after a 7 h incubation, whereas it could not be detected under the same condition in HP100 cells, suggesting the involvement of H(2)O(2)-mediated pathways in apoptosis. Flow cytometry revealed that H(2)O(2) formation preceded the increase in Delta Psi m and caspase-3 activation. Poly(ADP-ribose) polymerase (PARP) and NAD(P)H oxidase inhibitors prevented DOX-induced DNA ladder formation in HL-60 cells. Moreover, DOX significantly induced formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine, an indicator of oxidative DNA damage, in HL-60 cells at 1 h, but not in HP100 cells. DOX-induced apoptosis was mainly initiated by oxidative DNA damage in comparison with the ability of other topoisomerase inhibitors (TAS-103, amrubicin and amrubicinol) to cause DNA cleavage and apoptosis. These results suggest that the critical apoptotic trigger of DOX is considered to be oxidative DNA damage by the DOX-induced direct H(2)O(2) generation, although DOX-induced apoptosis may involve topoisomerase II inhibition. This oxidative DNA damage causes indirect H(2)O(2) generation through PARP and NAD(P)H oxidase activation, leading to the Delta Psi m increase and subsequent caspase-3 activation in DOX-induced apoptosis.  相似文献   
993.
Opisthorchis viverrini infection induces inflammation in and around the bile duct, leading to cholangiocarcinoma in humans. To examine the mechanism of O. viverrini-induced inflammatory response, we assessed the expression of Toll-like receptors (TLRs) in RAW 264.7 macrophage cell line treated with an extract of O. viverrini antigen. Flow cytometry and immunocytochemistry showed that O. viverrini antigen induced the expression of TLR2 but not TLR4. Western blotting and immunocytochemistry revealed that nuclear factor-kappaB (NF-kappaB), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were expressed in RAW 264.7 cells treated with O. viverrini antigen in a dose-dependent manner. These results suggest that O. viverrini induces inflammatory response through TLR2-mediated pathway leading to NF-kappaB-mediated expression of iNOS and COX-2.  相似文献   
994.
Ozone has been shown to induce lung tumors in mice. The reactivity of ozone with DNA in an aqueous solution was investigated by a DNA sequencing technique using 32P-labeled DNA fragments. Ozone induced cleavages in the deoxyribose-phosphate backbone of double-stranded DNA, which were reduced by hydroxyl radical scavengers, suggesting the participation of hydroxyl radicals in the cleavages. The ozone-induced DNA cleavages were enhanced with piperidine treatment, which induces cleavages at sites of base modification, but the inhibitory effect of hydroxyl radical scavengers on the piperidine-induced cleavages was limited. Main piperidine-labile sites were guanine and thymine residues. Cleavages at some guanine and thymine residues after piperidine treatment became more predominant with denatured single-stranded DNA. Exposure of calf thymus DNA to ozone resulted in a dose-dependent increase of the 8-oxo-7,8-dihydro-2'-deoxyguanosine formation, which was partially inhibited by hydroxyl radical scavengers. ESR studies using 5,5-dimethylpyrroline-N-oxide (DMPO) showed that aqueous ozone produced the hydroxyl radical adduct of DMPO. In addition, the fluorescein-dependent chemiluminescence was detected during the decomposition of ozone in a buffer solution and the enhancing effect of D2O was observed, suggesting the formation of singlet oxygen. However, no or little enhancing effect of D2O on the ozone-induced DNA damage was observed. These results suggest that DNA backbone cleavages were caused by ozone via the production of hydroxyl radicals, while DNA base modifications were mainly caused by ozone itself and the participation of hydroxyl radicals and/or singlet oxygen in base modifications is small, if any. A possible link of ozone-induced DNA damage to inflammation-associated carcinogenesis as well as air pollution-related carcinogenesis is discussed.  相似文献   
995.
We have recently characterized IQI/Jic mice as a model for Sjogren's syndrome (SS), a chronic autoimmune disease in humans. In SS, local lymphocytic infiltrations into salivary and lacrimal glands frequently develop to the involvement of systemic exocrine and nonexocrine organs, and the mechanism for progression of this disease remains obscure. Herein, we report identification of an autoantigen shared by various target organs in IQI/Jic mice. Polypeptides identified based on immunorecognition by autoantibodies in sera from IQI/Jic mice affected with autoimmune disease (>12 weeks of age) were tissue kallikrein (Klk)-1 and -13 and were cross-reactive to the autoantibodies. Interestingly, Klk-13, but not Klk-1, caused a proliferative response of splenic T cells from IQI/Jic mice from the age of 4 weeks onward. In addition, remarkably enhanced expression of Klk-13 was observed in the salivary glands of the mice in accordance with the development of inflammatory lesions. These results indicate that Klk-13 acts as an autoantigen and may increase T cells responsive to organs commonly expressing Klk-13, playing a pivotal role in the etiology of progression of disease in IQI/Jic mice. Our findings provide insights into the contributions of autoantigens shared by multiple organs in the progress of SS from an organ-specific to a systemic disorder.  相似文献   
996.
Several properties of chimeric enzymes between a mesophilic isocitrate dehydrogenase (IDH) from a nitrogen-fixing bacterium, Azotobacter vinelandii, and a cold-adapted IDH isozyme (IDH-II) from a psychrophilic bacterium, Colwellia maris, were examined. Each of the genes encoding the IDHs was divided into four regions of almost equal lengths, and each region was ligated with different combinations to construct various chimeric genes. The resultant wild-type and chimeric genes were overexpressed in Escherichia coli. The wild-type and chimeric IDHs were classified into three groups based on optimum temperatures for activity of 20°, 30°, and 40°C. The IDHs with a lower optimum temperature were more thermolabile. The optimum temperature and thermostability of the chimeric enzymes decreased on increasing the proportion derived from the cold-adapted IDH-II of C. maris. Furthermore, the C-terminal region of the C. maris IDH-II was suggested to be responsible for its psychrophilic characteristics.  相似文献   
997.
998.
999.
Lee SY  Fujitsuka Y  Kim DH  Takada S 《Proteins》2004,55(1):128-138
Protein-folding mechanisms of two small globular proteins, IgG binding domain of protein G and alpha spectrin SH3 domain are investigated via Brownian dynamics simulations with a model made of coarse-grained physical energy functions responsible for sequence-specific interactions and weak Gō-like energies. The folding pathways of alpha spectrin SH3 are known to be mainly controlled by the native topology, while protein G folding is anticipated to be more sensitive to the sequence-specific effects than native topology. We found in the folding of protein G that the C terminal beta hairpin is formed earlier and is rigid, once ordered, in the presence of an intact C terminal turn. The alpha helix is found to exhibit repeated partial formations/deformations during folding and to be stabilized via the tertiary contact with preformed beta sheets. This predicted scenario is fully consistent with experimental phi value data. Moreover, we found that the folding route is critically affected when the hydrophobic interaction is excluded from physical energy terms, suggesting that the hydrophobicity critically contributes to the folding propensity of protein G. For the folding of alpha spectrin SH3, we found that the distal beta hairpin and diverging turn are parts formed early, fully in harmony with previous results of simple Gō-like and experimental analysis, supporting that the folding route of SH3 domain is robust and coded by the native topology. The hybrid method provides useful tools for analyzing roles of physical interactions in determining folding mechanisms.  相似文献   
1000.
The accumulation of D-isomers of aspartic acid (D-Asp) in proteins during aging has been implicated in the pathogenesis of Alzheimer's disease, cataracts, and arteriosclerosis. Here, we identified a specific lactacystin-sensitive endopeptidase that cleaves the D-Asp-containing protein and named it D-aspartyl endopeptidase (DAEP). DAEP has a multi-complex structure (MW: 600kDa) and is localized in the inner mitochondrial membrane of mouse and rabbit, but DAEP activity was not detected in Escherichia coli, Saccharomyces cerevisiae, and Caenorhabditis elegans. A specific inhibitor for DAEP was newly synthesized, and inhibited DAEP activity (IC(50), 3microM), a factor of 10 greater than lactacystin on DAEP. On the other hand, the inhibitor did not inhibit either the 20S or 26S proteasome.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号