首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1281篇
  免费   163篇
  1444篇
  2022年   6篇
  2021年   23篇
  2020年   5篇
  2019年   11篇
  2018年   20篇
  2017年   13篇
  2016年   19篇
  2015年   34篇
  2014年   55篇
  2013年   50篇
  2012年   64篇
  2011年   56篇
  2010年   39篇
  2009年   36篇
  2008年   61篇
  2007年   67篇
  2006年   80篇
  2005年   60篇
  2004年   77篇
  2003年   65篇
  2002年   56篇
  2001年   67篇
  2000年   59篇
  1999年   48篇
  1998年   22篇
  1997年   13篇
  1996年   15篇
  1995年   23篇
  1994年   22篇
  1993年   12篇
  1992年   35篇
  1991年   24篇
  1990年   30篇
  1989年   22篇
  1988年   14篇
  1987年   13篇
  1986年   9篇
  1985年   12篇
  1984年   10篇
  1983年   6篇
  1982年   9篇
  1981年   8篇
  1980年   5篇
  1979年   11篇
  1978年   9篇
  1977年   13篇
  1974年   4篇
  1973年   4篇
  1971年   5篇
  1969年   4篇
排序方式: 共有1444条查询结果,搜索用时 15 毫秒
51.
52.

Background  

High-density short oligonucleotide microarrays are useful tools for studying biodiversity, because they can be used to investigate both nucleotide and expression polymorphisms. However, when different strains (or species) produce different signal intensities after mRNA hybridization, it is not easy to determine whether the signal intensities were affected by nucleotide or expression polymorphisms. To overcome this difficulty, nucleotide and expression polymorphisms are currently examined separately.  相似文献   
53.
The genome of influenza A virus consists of eight single-strand negative-sense RNA segments, each comprised of a coding region and a noncoding region. The noncoding region of the NS segment is thought to provide the signal for packaging; however, we recently showed that the coding regions located at both ends of the hemagglutinin and neuraminidase segments were important for their incorporation into virions. In an effort to improve our understanding of the mechanism of influenza virus genome packaging, we sought to identify the regions of NS viral RNA (vRNA) that are required for its efficient incorporation into virions. Deletion analysis showed that the first 30 nucleotides of the 3' coding region are critical for efficient NS vRNA incorporation and that deletion of the 3' segment-specific noncoding region drastically reduces NS vRNA incorporation into virions. Furthermore, silent mutations in the first 30 nucleotides of the 3' NS coding region reduced the incorporation efficiency of the NS segment and affected virus replication. These results suggested that segment-specific noncoding regions together with adjacent coding regions (especially at the 3' end) form a structure that is required for efficient influenza A virus vRNA packaging.  相似文献   
54.
For the detection and identification of predominant bacteria in human feces, 16S rRNA-gene-targeted group-specific primers for the Bacteroides fragilis group, Bifidobacterium, the Clostridium coccoides group, and Prevotella were designed and evaluated. The specificity of these primers was confirmed by using DNA extracted from 90 species that are commonly found in the human intestinal microflora. The group-specific primers were then used for identification of 300 isolates from feces of six healthy volunteers. The isolates were clearly identified as 117 isolates of the B. fragilis group, 22 isolates of Bifidobacterium, 65 isolates of the C. coccoides group, and 17 isolates of Prevotella, indicating that 74% of the isolates were identified with the four pairs of primers. The remaining 79 isolates were identified by 16S ribosomal DNA sequence analysis and consisted of 40 isolates of Collinsella, 24 isolates of the Clostridium leptum subgroup, and 15 isolates of disparate clusters. In addition, qualitative detection of these bacterial groups was accomplished without cultivation by using DNA extracted from the fecal samples. The goal for this specific PCR technique is to develop a procedure for quantitative detection of these bacterial groups, and a real-time quantitative PCR for detection of Bifidobacterium is now being investigated (T. Requena, J. Burton, T. Matsuki, K. Munro, M. A. Simon, R. Tanaka, K. Watanabe, and G. W. Tannock, Appl. Environ. Microbiol. 68:2420-2427, 2002). Therefore, the approaches used to detect and identify predominant bacteria with the group-specific primers described here should contribute to future studies of the composition and dynamics of the intestinal microflora.  相似文献   
55.
Compared to peripheral blood resting B cells, Epstein-Barr virus (EBV)-immortalized B cells consistently express CCR6 and CCR10 at high levels and CXCR4 and CXCR5 at low levels. Accordingly, these cells vigorously responded to the ligands of CCR6 and CCR10 but not to those of CXCR4 and CXCR5. In a human EBV-negative B-cell line, BJAB, stable expression of EBNA2 upregulated CCR6, while stable expression of EBNA2 as well as LMP1 downregulated CXCR4. On the other hand, upregulation of CCR10 or downregulation of CXCR5 was not induced in BJAB by stable expression of EBNA2 or LMP1. Thus, these changes may be due to a plasmablast-like stage of B-cell differentiation fixed by EBV immortalization. EBV-infected B cells in infectious mononucleosis are known to avoid germinal centers and accumulate under the mucosal surfaces. EBV-associated opportunistic lymphomas also tend to occur in extranodal sites. These preferred sites of in vivo localization are consistent with the unique profile of chemokine receptor expression exhibited by EBV-immortalized B cells.  相似文献   
56.
57.
Integrin αvβ3 plays a role in insulin-like growth factor-1 (IGF1) signaling (integrin-IGF1 receptor (IGF1R) cross-talk). The specifics of the cross-talk are, however, unclear. In a current model, "ligand occupancy" of αvβ3 (i.e. the binding of extracellular matrix proteins) enhances signaling induced by IGF1 binding to IGF1R. We recently reported that IGF1 directly binds to αvβ3 and induces αvβ3-IGF1-IGF1R ternary complex formation. Consistently, the integrin binding-defective IGF1 mutant (R36E/R37E) is defective in inducing ternary complex formation and IGF signaling, but it still binds to IGF1R. Like αvβ3, integrin α6β4 is overexpressed in many cancers and is implicated in cancer progression. Here, we discovered that α6β4 directly bound to IGF1, but not to R36E/R37E. Grafting the β4 sequence WPNSDP (residues 167-172), which corresponds to the specificity loop of β3, to integrin β1 markedly enhanced IGF1 binding to β1, suggesting that the WPNSDP sequence is involved in IGF1 recognition. WT IGF1 induced α6β4-IGF1-IGF1R ternary complex formation, whereas R36E/R37E did not. When cells were attached to matrix, exogenous IGF1 or α6β4 expression had little or no effect on intracellular signaling. When cell-matrix adhesion was reduced (in poly(2-hydroxyethyl methacrylate-coated plates), IGF1 induced intracellular signaling and enhanced cell survival in an α6β4-dependent manner. Also IGF1 enhanced colony formation in soft agar in an α6β4-dependent manner. These results suggest that IGF binding to α6β4 plays a major role in IGF signaling in anchorage-independent conditions, which mimic the in vivo environment, and is a novel therapeutic target.  相似文献   
58.
Activation of caspases is commonly involved in the apoptosis induced by various anticancer drugs. However, the upstream events leading to the activation of caspases seem to be specific to each anticancer drug. In the present study, we examined the possible involvement of protein kinase C (PKC) and ceramide generation in caspase-3(-like) protease activation induced by inostamycin, a phosphatidylinositol synthesis inhibitor. Treatment of cells with 12-O-tetradecanoyl phorbol-13-acetate (TPA), an activator of PKC, suppressed the release of cytochrome c from mitochondria and the activation of caspase-3(-like) proteases in inostamycin-treated cells, but not in other anticancer drug-treated cells. Inostamycin induced the elevation of intracellular ceramide levels, and fumonisin B1, an inhibitor of ceramide synthase, inhibited inostamycin-induced cytochrome c release, caspase-3(-like) protease activation, and apoptosis. Moreover, TPA also inhibited inostamycin-induced ceramide synthesis. Taken together, our results suggest that inostamycin-induced apoptosis is mediated by PKC-regulated ceramide generation, leading to the activation of a caspase cascade.  相似文献   
59.

Background

Subcellular localization of coding and non-coding RNAs has emerged as major regulatory mechanisms of gene expression in various cell types and many organisms. However, techniques that enable detection of the subcellular distribution of these RNAs with high sensitivity and high resolution remain limited, particularly in vertebrate adult tissues and organs. In this study, we examined the expression and localization of mRNAs encoding Pou5f1/Oct4, Mos, Cyclin B1 and Deleted in Azoospermia-like (Dazl) in zebrafish and mouse ovaries by combining tyramide signal amplification (TSA)-based in situ hybridization with paraffin sections which can preserve cell morphology of tissues and organs at subcellular levels. In addition, the distribution of a long non-coding RNA (lncRNA), lncRNA-HSVIII, in mouse testes was examined by the same method.

Results

The mRNAs encoding Mos, Cyclin B1 and Dazl were found to assemble into distinct granules that were distributed in different subcellular regions of zebrafish and mouse oocytes, suggesting conserved and specific regulations of these mRNAs. The lncRNA-HSVIII was first detected in the nucleus of spermatocytes at prophase I of the meiotic cell cycle and was then found in the cytoplasm of round spermatids, revealing expression patterns of lncRNA during germ cell development. Collectively, the in situ hybridization method demonstrated in this study achieved the detection and comparison of precise distribution patterns of coding and non-coding RNAs at subcellular levels in single cells of adult tissues and organs.

Conclusions

This high-sensitivity and high-resolution in situ hybridization is applicable to many vertebrate species and to various tissues and organs and will be useful for studies on the subcellular regulation of gene expression at the level of RNA localization.
  相似文献   
60.
A gain-of-function mutation in the myeloproliferative leukemia virus (MPL) gene, which encodes the thrombopoietin receptor, has been identified in patients with essential thrombocythemia and primary myelofibrosis, subgroups of classic myeloproliferative neoplasms (MPNs). The presence of MPL gene mutations is a critical diagnostic criterion for these diseases. Here, we developed a rapid, simple, and cost-effective method of detecting two major MPL mutations, MPLW515L/K, in a single PCR assay; we termed this method DARMS (dual amplification refractory mutation system)-PCR. DARMS-PCR is designed to produce three different PCR products corresponding to MPLW515L, MPLW515K, and all MPL alleles. The amplicons are later detected and quantified using a capillary sequencer to determine the relative frequencies of the mutant and wild-type alleles. Applying DARMS-PCR to human specimens, we successfully identified MPL mutations in MPN patients, with the exception of patients bearing mutant allele frequencies below the detection limit (5%) of this method. The MPL mutant allele frequencies determined using DARMS-PCR correlated strongly with the values determined using deep sequencing. Thus, we demonstrated the potential of DARMS-PCR to detect MPL mutations and determine the allele frequencies in a timely and cost-effective manner.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号