首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   163篇
  免费   2篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2016年   2篇
  2015年   2篇
  2014年   8篇
  2013年   8篇
  2012年   5篇
  2011年   7篇
  2010年   4篇
  2009年   5篇
  2008年   6篇
  2007年   5篇
  2006年   10篇
  2005年   9篇
  2004年   7篇
  2003年   12篇
  2002年   17篇
  2001年   4篇
  2000年   5篇
  1999年   6篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1994年   3篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1990年   4篇
  1989年   2篇
  1986年   1篇
  1985年   2篇
  1983年   2篇
  1981年   2篇
  1973年   1篇
  1969年   1篇
排序方式: 共有165条查询结果,搜索用时 15 毫秒
151.
Protein kinase B (PKB)/Akt reportedly plays a role in the survival and/or proliferation of cells. We identified a novel protein, which binds to PKB, using a yeast two-hybrid screening system. This association was demonstrated not only in vivo by overexpressing both proteins or by coimmunoprecipitation of the endogenous proteins, but also in vitro using glutathione S-transferase fusion proteins. Importantly, this protein specifically associates with the C terminus of PKB but not with other AGC kinases and enhances PKB phosphorylation and kinase activation without growth factor stimulation. Thus, we termed this Akt-specific binding protein APE (Akt-phosphorylation enhancer). Since APE-induced phosphorylation of PKB did not occur in cells treated with wortmannin or LY294002, APE itself is not a kinase but seems to enhance or prolong the phosphoinositide 3-kinase-dependent phosphorylation of PKB. In cells in which APE was suppressed by small interfering RNA, DNA synthesis was significantly reduced with suppression of PKB phosphorylation, suggesting a synergistic role of APE in PKB-induced proliferation. On the other hand, in cells overexpressing both PKB and APE, despite markedly increased basal phosphorylation of PKB, both DNA rereplication and subsequent Chk2 phosphorylation and apoptosis were seen, suggesting the involvement of APE in the regulation of cell cycling replication licensing. Taking these observations together, APE appears to be a novel regulator of PKB phosphorylation. Furthermore, the interaction between APE and PKB, possibly dependent on the expression levels of both proteins, may be a novel molecular mechanism leading to proliferation and/or apoptosis.  相似文献   
152.
We investigated the mechanism of apoptosis induced by bafilomycin A(1), an inhibitor of vacuolar H(+)-ATPase. Bafilomycin A(1) significantly inhibited the growth of MKN-1 human gastric cancer cells. Bafilomycin A(1) induced apoptosis as demonstrated by DNA ladder formation and the TUNEL method. We designed a flow cytometric assay to detect the alteration in lysosomal pH using a fluorescent probe, fluorescein isothiocyanate-conjugated dextran. This assay revealed that bafilomycin A(1) dramatically increased lysosomal pH. However, bafilomycin A(1) induced neither significant decrease in mitochondrial transmembrane potential nor the release of mitochondrial cytochrome c into the cytoplasm. Western blotting showed that cathepsin D, but not cathepsin L, was released into the cytoplasm. The activity of caspase-3 was significantly increased by bafilomycin A(1). However, cathepsin D did not directly cleave procaspase-3. These findings suggest that bafilomycin A(1)-induced apoptosis in MKN-1 cells is mediated by other proteases released after lysosomal dysfunction followed by activation of caspase-3 in a cytochrome c-independent manner. The present study showed that flow cytometric analysis of lysosomal pH can be useful to evaluate lysosomal protease-mediated apoptosis.  相似文献   
153.
TAS-103, a new anticancer drug, induces DNA cleavage by inhibiting the activities of topoisomerases I and II. We investigated the mechanism of TAS-103-induced apoptosis in human cell lines. Pulsed field gel electrophoresis revealed that in the leukemia cell line HL-60 and the H(2)O(2)-resistant subclone, HP100, TAS-103 induced DNA cleavage to form 1-2-Mb fragments at 1 h to a similar extent, indicating that the DNA cleavage was induced independently of H(2)O(2). TAS-103-induced DNA ladder formation in HP100 cells was delayed compared with that seen at 4 h in HL-60 cells, suggesting the involvement of H(2)O(2)-mediated pathways in apoptosis. Flow cytometry revealed that H(2)O(2) formation preceded increases in mitochondrial membrane potential (DeltaPsim) and caspase-3 activation. Inhibitors of poly(ADP-ribose) polymerase (PARP) prevented both TAS-103-induced H(2)O(2) generation and DNA ladder formation. The levels of NAD(+), a PARP substrate, were significantly decreased in HL-60 cells after a 3-h incubation with TAS-103. The decreases in NAD(+) levels preceded both increases in DeltaPsim and DNA ladder formation. Inhibitors of NAD(P)H oxidase prevented TAS-103-induced apoptosis, suggesting that NAD(P)H oxidase is the primary enzyme mediating H(2)O(2) formation. Expression of the antiapoptotic protein, Bcl-2, in BJAB cells drastically inhibited TAS-103-induced apoptosis, confirming that H(2)O(2) generation occurs upstream of mitochondrial permeability transition. Therefore, these findings indicate that DNA cleavage by TAS-103 induces PARP hyperactivation and subsequent NAD(+) depletion, followed by the activation of NAD(P)H oxidase. This enzyme mediates O(2)(-)-derived H(2)O(2) generation, followed by the increase in DeltaPsim and subsequent caspase-3 activation, leading to apoptosis.  相似文献   
154.
Variation in the distribution of trace elements in hepatoma   总被引:3,自引:0,他引:3  
There are many reports of reduction of zinc level and rise of copper level in serum of patients with liver disease. However, there are a few reports that compare the trace elements in tumor tissues and nontumor tissues of the liver with hepatoma. We studied trace element distribution in tumor tissues and nontumor tissues of liver with hepatoma and compared them with data from normal liver tissues. Zinc (Zn), copper (Cu), selenium (Se), cadmium (Cd), mercury (Hg), and iron (Fe) were chosen as the trace elements to be observed. We observed falls of Zn, Cd, and Hg levels in tumor tissues and the rise of Cu level as a result of this investigation. Zn, Cd, and Hg levels in tumor tissues were significantly lower than those in nontumor tissues and Zn, Cd, and Hg levels in nontumor tissues were significantly lower than in normal liver tissues. This tendency was clearer for Cd and Hg than for Zn. Although the distribution of Cu was not significant, a distribution contrary to that of Zn was shown. These findings indicate that the distribution of Zn, Cd, and Hg can serve as supportive evidence that could be useful as a tumor marker. Selenium showed almost the same accumulation tendency among tumor tissues, nontumor tissues, and normal livers. Although correlation was observed among most metals in the normal liver, there was almost no correlation in tumor tissues.  相似文献   
155.
TNFalpha, which activates three different MAPKs [ERK, p38, and jun amino terminal kinase (JNK)], also induces insulin resistance. To better understand the respective roles of these three MAPK pathways in insulin signaling and their contribution to insulin resistance, constitutively active MAPK/ERK kinase (MEK)1, MAPK kinase (MKK6), and MKK7 mutants were overexpressed in 3T3-L1 adipocytes using an adenovirus-mediated transfection procedure. The MEK1 mutant, which activates ERK, markedly down-regulated expression of the insulin receptor (IR) and its major substrates, IRS-1 and IRS-2, mRNA and protein, and in turn reduced tyrosine phosphorylation of IR as well as IRS-1 and IRS-2 and their associated phosphatidyl inositol 3-kinase (PI3K) activity. The MKK6 mutant, which activates p38, moderately inhibited IRS-1 and IRS-2 expressions and IRS-1-associated PI3K activity without exerting a significant effect on the IR. Finally, the MKK7 mutant, which activates JNK, reduced tyrosine phosphorylation of IRS-1 and IRS-2 and IRS-associated PI3K activity without affecting expression of the IR, IRS-1, or IRS-2. In the context of our earlier report showing down-regulation of glucose transporter 4 by MEK1-ERK and MKK6/3-p38, the present findings suggest that chronic activation of ERK, p38, or JNK can induce insulin resistance by affecting glucose transporter expression and insulin signaling, though via distinctly different mechanisms. The contribution of ERK is, however, the strongest.  相似文献   
156.
Metabolic stabilization of the chemical lead 1, which is a structurally novel inhibitor of TNF-alpha production, was accomplished by introducing a (1S)-methyl group into the optically active backbone. As a result, 2, 3 and 4 were identified as drug candidates and evaluated pharmacologically. The analysis of an active conformer was also carried out.  相似文献   
157.
Discovery of new chemical leads of inhibitors for TNF-alpha production starting from the chemical modification of 1 is reported. Further biological studies of 1 to disclose the site of its action strongly suggested that 1 inhibits LPS-induced TNF-alpha expression in the liver and spleen of mice. Structure-activity relationships (SARs) are also discussed and full details including the chemistry are reported.  相似文献   
158.
The restriction endonucleaseSmaI has been used for the diagnosis of neurogenic muscle weakness, ataxia and retinitis pigmentosa disease or Leigh's disease, caused by the Mt8993TG mutation which results in a Leu156Arg replacement that blocks proton translocation activity of subunit a of F0F1-ATPase. Our ultimate goal is to applySmaI to gene therapy for this disease, because the mutant mitochondrial DNA (mtDNA) coexists with the wild-type mtDNA (heteroplasmy), and because only the mutant mtDNA, but not the wild-type mtDNA, is selectively restricted by the enzyme. For this purpose, we transiently expressed theSmaI gene fused to a mitochondrial targeting sequence in cybrids carrying the mutant mtDNA. Here, we demonstrate that mitochondria targeted by theSmaI enzyme showed specific elimination of the mutant mtDNA. This elimination was followed with repopulation by the wild-type mtDNA, resulting in restoration of both the normal intracellular ATP level and normal mitochondrial membrane potential. Furthermore, in vivo electroporation of the plasmids expressing mitochondrion-targetedEcoRI induced a decrease in cytochromec oxidase activity in hamster skeletal muscles while causing no degenerative changes in nuclei. Delivery of restriction enzymes into mitochondria is a novel strategy for gene therapy of a special form of mitochondrial diseases.  相似文献   
159.
While screening for novel IL-6 inhibitors, we synthesized 20S,21-epoxy-resibufogenin-3-acetate (ERBA). ERBA dose-dependently suppressed IL-6-induced cell growth with an IC(50) value of 5.3 microM and caused a parallel rightward shift of dose-response curves to IL-6. Analysis of data yields a pA2 of 5.83 and a slope of 0.99. ERBA did not affect IL-2-, IL-3-, and GCSF-dependent cell growth, or tumor necrosis factor alpha-induced growth suppression, nor did ERBA affect osteoclast formation induced by IL-11, leukemia inhibitory factor, and 1alpha,25-dihydroxyvitamin D(3). Receptor assay showed that ERBA dose-dependently suppressed IL-6 binding to IL-6 receptor (IL-6R). Furthermore, no band existing at the position of IL-6R in Western blots of ERBA-treated cells when stimulated with IL-6:ERBA suppresses IL-6 activity by blocking the binding of IL-6 to IL-6R. In an experimental model of colon 26-induced cancer cachexia, ERBA markedly inhibited body weight loss. ERBA is a specific small molecule with IL-6R-antagonist activity.  相似文献   
160.
It is a central issue to elucidate the new type of molecular recognition accompanied by a global structural change of a molecule upon binding to its targets. Here we investigate the driving force for the binding of R12 (a ribonucleic acid aptamer) and P16 (a partial peptide of a prion protein) during which P16 exhibits the global structural change. We calculate changes in thermodynamic quantities upon the R12–P16 binding using a statistical-mechanical approach combined with molecular models for water which is currently best suited to studies on hydration of biomolecules. The binding is driven by a water-entropy gain originating primarily from an increase in the total volume available to the translational displacement of water molecules in the system. The energy decrease due to the gain of R12–P16 attractive (van der Waals and electrostatic) interactions is almost canceled out by the energy increase related to the loss of R12–water and P16–water attractive interactions. We can explain the general experimental result that stacking of flat moieties, hydrogen bonding and molecular-shape and electrostatic complementarities are frequently observed in the complexes. It is argued that the water-entropy gain is largely influenced by the geometric characteristics (overall shapes, sizes and detailed polyatomic structures) of the biomolecules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号