首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   7篇
  2023年   1篇
  2021年   2篇
  2018年   1篇
  2017年   3篇
  2016年   3篇
  2015年   1篇
  2014年   4篇
  2013年   1篇
  2012年   6篇
  2011年   6篇
  2010年   4篇
  2009年   1篇
  2008年   3篇
  2007年   6篇
  2006年   5篇
  2005年   4篇
  2004年   3篇
  2003年   4篇
  2002年   1篇
  2001年   2篇
  2000年   7篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1994年   1篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1980年   1篇
  1979年   1篇
  1975年   1篇
  1969年   2篇
  1968年   1篇
  1965年   1篇
排序方式: 共有85条查询结果,搜索用时 31 毫秒
31.
Dipicolinic acid (pyridine-2,6-carboxylic acid; DPA) is a major component of bacterial spores and has been shown to be an important determinant of spore resistance. In the core of dormant Bacillus subtilis spores, DPA is associated with divalent calcium in a 1:1 chelate (Ca–DPA). Spores excrete Ca–DPA during germination, but it is unknown whether Ca and DPA are imported separately or together into the developing spore. Elemental analysis by scanning electron microscopy–energy-dispersive X-ray spectroscopy (SEM–EDS) of wild-type spores and mutant spores lacking the ability to synthesize DPA showed that DPA-less spores also lacked calcium, suggesting that the two compounds may be co-imported.  相似文献   
32.
Plants engage in complex multipartite interactions with mutualists and antagonists, but these interactions are rarely included in studies that explore plant invasiveness. When considered in isolation, we know that beneficial microbes can enhance an exotic plant’s invasive ability and that herbivorous insects often decrease an exotic plant’s likeliness of success. However, the effect of these partners on plant fitness has not been well characterized when all three species coevolve. We use computational evolutionary modeling of a trait-based system to test how microbes and herbivores simultaneously coevolving with an invading plant affect the invaders’ probability of becoming established. Specifically, we designed a model that explores how a beneficial microbe would influence the outcome of an interaction between a plant and herbivore. To model novel interactions, we included a phenotypic trait shared by each species. Making this trait continuous and selectable allows us to explore how trait similarities between coevolving plants, herbivores and microbes affect fitness. Using this model, we answer the following questions: (1) Can a beneficial plant-microbe interaction influence the evolutionary outcome of antagonistic interactions between plants and herbivores? (2) How does the initial trait similarity between interacting organisms affect the likelihood of plant survival in novel locations? (3) Does the effect of tripartite interactions on the invasion success of a plant depend on whether organisms interact through trait similarity [Enemy Release Hypothesis (ERH)] or dissimilarity (Biotic Resistance Hypothesis)? We found that it was much more difficult for plants to invade under the ERH but that beneficial microbes increase the probability of plant survival in a novel range under both hypotheses. To our knowledge, this model is the first to use tripartite interactions to explore novel species introductions. It represents a step towards gaining a better understanding of the factors influencing establishment of exotic species to prevent future invasions.  相似文献   
33.
ObjectiveTo identify the prevalence of hypertriglyceridemic waist (HTW) phenotype and its association with metabolic abnormalities in schoolchildren.MethodsA cross-sectional study, with a sample of 241 students aged 10 to 14 years from public schools (4 schools) and private (2 schools) from Paranavai town, in Parana State, Brazil. Anthropometric variables (weight, height, waist circumference) and levels of triglycerides, total cholesterol, HDL-C, non-HDL and LDL-C were analyzed. In statistical tests of Pearson partial correlation and multivariate logistic regression, considering p<0,05.ResultsThe prevalence of HTW was 20,7% among schoolchildren, 14,1% in males and 6,6% among females with higher proportions aged 10–12 years old. Multivariate analysis indicated that the students who attended private schools were nearly three times more likely (95% CI: 1,2–5,6), to be diagnosed with HTW compared with those who attended public schools (p = 0,006), and LDL-C was the only metabolic variable positively associated with the outcome (p = 0,001), where the students categorized with elevated serum levels had odds 4,2 times (95% CI: 1,6–10,9) having the HTW compared to students in appropriate levels.ConclusionThis study showed higher prevalence of hypertriglyceridemic waist phenotype in students when compared to prospective studies in Brazil and worldwide. It also showed that the only metabolic alteration associated with HTW phenotype was LDL-C (low density lipoprotein).  相似文献   
34.
Mammalian Genome - We investigated the contribution of apoptosis-inducing factor (AIF), a key regulator of mitochondrial biogenesis, in supporting hair growth. We report that pelage abnormalities...  相似文献   
35.
Homomeric P2X3 receptors are present in sensory ganglia and participate in pain perception. Amino acid (AA) residues were replaced in the four supposed nucleotide binding segments (NBSs) of the human (h) P2X3 receptor by alanine, and these mutants were expressed in HEK293 cells and Xenopus laevis oocytes. Patch clamp and two-electrode voltage clamp measurements as well as the Ca(2+) imaging technique were used to compare the concentration-response curves of the selective P2X1,3 agonist α,β-methylene ATP obtained at the wild-type P2X3 receptor and its NBS mutants. Within these NBSs, certain Gly (Gly-66), Lys (Lys-63, Lys-176, Lys-284, Lys-299), Asn (Asn-177, Asn-279), Arg (Arg-281, Arg-295), and Thr (Thr-172) residues were of great importance for a full agonist response. However, the replacement of further AAs in the NBSs by Ala also appeared to modify the amplitude of the current and/or [Ca(2+)](i) responses, although sometimes to a minor degree. The agonist potency decrease was additive after the simultaneous replacement of two adjacent AAs by Ala (K65A/G66A, F171A/T172A, N279A/F280A, F280A/R281A) but was not altered after Ala substitution of two non-adjacent AAs within the same NBS (F171A/N177A). SDS-PAGE in the Cy5 cell surface-labeled form demonstrated that the mutants appeared at the cell surface in oocytes. Thus, groups of AAs organized in NBSs rather than individual amino acids appear to be responsible for agonist binding at the hP2X3 receptor. These NBSs are located at the interface of the three subunits forming a functional receptor.  相似文献   
36.
α-Synuclein is abundantly present in Lewy bodies, characteristic of Parkinson's disease. Its exact physiological role has yet to be determined, but mitochondrial membrane binding is suspected to be a key aspect of its function. Electron paramagnetic resonance spectroscopy in combination with site-directed spin labeling allowed for a locally resolved analysis of the protein-membrane binding affinity for artificial phospholipid membranes, supported by a study of binding to isolated mitochondria. The data reveal that the binding affinity of the N-terminus is nonuniform.  相似文献   
37.
Heart failure is associated with an increase in plasma nitrate and nitrite (NOx). To date there is still some controversy regarding the causes of nitrate accumulation during the development of heart failure. The goal of this study was to analyze the underlying mechanisms that cause accumulation of plasma nitrates during the development of heart failure in dogs. Dogs were chronically instrumented for measurement of hemodynamics and renal function. Hearts were paced initially at 210 bpm for 3 weeks and then at 240 until the development of heart failure. Hemodynamics, renal function, renal blood flow, arterial blood gases, hemoglobin, plasma and urine NOx levels, and creatinine levels were measured weekly. Heart failure was assessed by hemodynamic alterations, physical signs such as lethargy, ascites, cachexia, and postmortem evidence of cardiac hypertrophy. LVSP (from 127 +/- 3 to 106 +/- 3 mmHg), LV dP/dt (from 2658 +/- 173 to 1439 +/- 217 mmHg/s), MAP (from 101 +/- 1.9 to 83 +/- 1.8 mmHg) fell, whereas LVEDP tripled (from 6.4 +/- 0.9 to 20 +/- 2.6 mmHg), and heart rate rose (from 101 +/- 4.2 to 117 +/- 6.3 bpm), all changes P < 0.05. RBF (from 146 +/- 10 to 96 +/- 9.9 ml/min), urine output (V) (from 0.26 +/- 0.02 to 0.16 +/- 0.02 ml/min), GFR (from 63 +/- 1.8 to 49 +/- 2 ml/min), and Na excretion (from 45 +/- 4.5 to 14 +/- 4.6 microEq/min) all decreased (P < 0.05), whereas RVR increased (from 0.68 +/- 0.05 to 0.94 +/- 0.1 mmHg/ml/min). These changes took place during a rise in plasma NOx (from 3.7 +/- 0.5 to 16+/-3.3 microM), a decrease in urine NOx (from 33 +/- 9.9 to 8.1 +/- 4.9 microM), and a concurrent increase in NOx reabsorption (from 221 +/- 31 to 818 +/- 166 nmol/min). There was a direct correlation between the increase in plasma NOx levels and an increase in filtered load (r(2) = 0.97, P = 0.02), a negative correlation between NOx levels and NOx excretion (r(2) = 0.65 P < 0.09), and a direct correlation between plasma NOx levels and NOx reabsorption (r(2) = 0.97, P = 0.02). These results indicate that elevated plasma NOx during heart failure are most likely the result of an impairment of the renal function and not increased NOx production. Furthermore, without knowing changes in renal function the measurement of plasma NOx in and of itself is a meaningless index of NO formation.  相似文献   
38.
Bacillus subtilis strains 168 met ile leu and 23 thy contain folates which differ from one another in the number of glutamyl residues. The folate species were identified by reductive cleavage to the corresponding p-aminobenzoylglutamyl poly-gamma-glutamates and chromatography on diethylaminoethyl-cellulose. Pteroyltriglutamate is the predominant folate type, accounting for 86 to 88% of the total. Pteroyltetraglutamate is the only other type present in appreciable quantities, accounting for 5 to 6% of the total folates. Pteroyldiglutamate and pteroylpentaglutamate are present in small amounts, accounting for 1 to 3% and 1% of the total folates, respectively. Strain 168 met ile leu contains a very small amount of pteroylmonoglutamate (less than 0.5% of the total folates), but the other strain contains none.  相似文献   
39.
We investigated the role of nitric oxide (NO) in the control of myocardial O(2) consumption in the hearts of female Xenopus frogs, which lack a coronary vascular endothelium and in which the endocardial endothelium is the only source of NO to regulate cardiac myocyte function. Hence, frogs are an ideal model in which to explore the role of diffusion of NO from the endocardial endothelium (EE) without vascular endothelial or cardiac cell NO production. In Xenopus hearts we examined the regulation of cardiac O(2) consumption in vitro at 25 degrees C and 37 degrees C. The NO-mediated control of O(2) consumption by bradykinin or carbachol was significantly (P < 0.05) lower at 25 degrees C (79 +/- 13 or 73 +/- 11 nmol/min) than at 37 degrees C (159 +/- 26 or 201 +/- 13 nmol/min). The response to the NO donor S-nitroso-N-acetyl penicillamine was also markedly lower at 25 degrees C (90 +/- 8 nmol/min) compared with 37 degrees C (218 +/- 15 nmol/min). When Triton X-100 was perfused into hearts, the inhibition of myocardial O(2) consumption by bradykinin (18 +/- 2 nmol/min) or carbachol (29 +/- 4 nmol/min) was abolished. Hematoxylin and eosin slides of Triton X-100-perfused heart tissue confirmed the absence of the EE. Although endothelial NO synthase protein levels were decreased to a variable degree in the Triton X-100-perfused heart, NO(2) production (indicating eNOS activity) decreased by >80%. It appears that the EE of the frog heart is the sole source of NO to regulate myocyte O(2) consumption. When these cells are removed, the ability of NO to regulate O(2) consumption is severely limited. Thus our results suggest that the EE produces enough NO, which diffuses from the EE to cardiac myocytes, to regulate myocardial O(2) consumption. Because of the close proximity of the EE to underlying myocytes, NO can diffuse over a distance and act as a messenger between the EE and the rest of the heart to control mitochondrial function and O(2) consumption.  相似文献   
40.
The aim of this study was to investigate the significance of two intracellular scavengers of nitric oxide (NO): 1) superoxide dismutase (SOD) (SOD2) to scavenge intramitochondrial superoxide anion, and 2) cytosolic myoglobin (Mb) in the regulation of tissue O2 consumption. O2 consumption was measured in vitro using a Clark-type O2 electrode. SOD heterozygous mice (SODHZ) (n = 13) and SOD wild-type (SODWT) (n = 5) mice were used. Bradykinin (BK, 10-4 mol/l) reduced O2 consumption by 15% +/- 1 in hearts of SODHZ mice, which was significantly different from SODWT (reduced by 24 +/- 0.4%). Tiron significantly increased the inhibition of O2 consumption by BK in male mice from 15 +/- 1% (n = 13) to 29 +/- 1.2% (n = 4) at 10-4 mol/l concentration (P < 0.05). The effect of carbachol was similar to BK. S-nitroso-N-acetyl penicillamine (SNAP, 10-4 mol/l) reduced O2 consumption by 39 +/- 1.3% in hearts of SODHZ mice, which was not significantly different from SODWT. But at 10-7 mol/l, SNAP caused significantly less inhibition of O2 consumption in SODHZ mice. Mb knockout (MbKO; Mb wild-type n = 6) and (MbWT) mice (n = 6) were also used. Kidney cortex was studied as the negative control because it does not contain Mb. BK (10-4 mol/l) reduced O2 consumption by 32 +/- 2, 29 +/- 1, and 26 +/- 1% in the heart, skeletal muscle, and kidney of MbKO mice, which was also not significantly different from MbWT. SNAP (10-4 mol/l) reduced O2 consumption by 39 +/- 3, 42 +/- 4, and 46 +/- 2% in the heart, skeletal muscle, and kidney of MbKO mice, which was also not significantly different from MbWT. NG-nitro-l-arginine methyl ester (P < 0.05) inhibited the reduction in O2 consumption induced by BK in the MbKO mouse heart (15 +/- 1%), skeletal muscle (17 +/- 1%), and kidney (17 +/- 1%) as in the MbWT mice. These results suggest that the role of Mb as an intracellular NO scavenger is small, and the increase in mitochondrial superoxide in SODHZ mice may cause a decrease NO bioavailability and alter the control of myocardial O2 consumption by NO.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号