首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   279篇
  免费   15篇
  2021年   5篇
  2020年   3篇
  2018年   5篇
  2016年   6篇
  2015年   8篇
  2014年   7篇
  2013年   12篇
  2012年   15篇
  2011年   12篇
  2010年   2篇
  2009年   10篇
  2008年   14篇
  2007年   16篇
  2006年   9篇
  2005年   12篇
  2004年   24篇
  2003年   9篇
  2002年   12篇
  2001年   4篇
  2000年   3篇
  1998年   2篇
  1996年   4篇
  1995年   3篇
  1994年   2篇
  1993年   5篇
  1992年   5篇
  1991年   2篇
  1990年   5篇
  1989年   3篇
  1988年   2篇
  1987年   4篇
  1986年   2篇
  1985年   4篇
  1984年   4篇
  1983年   12篇
  1981年   5篇
  1980年   3篇
  1979年   10篇
  1978年   3篇
  1977年   1篇
  1976年   4篇
  1975年   2篇
  1974年   3篇
  1973年   3篇
  1972年   1篇
  1970年   1篇
  1968年   3篇
  1967年   2篇
  1965年   2篇
  1964年   1篇
排序方式: 共有294条查询结果,搜索用时 15 毫秒
101.
The mitochondrial enzyme, cytochrome oxidase, was localized cytochemically in the nucleus magnocellularis, a primary relay nucleus of vestibular information within the area octavolateralis in the fish brain. Larvae of the cichlid fish Oreochromis mossambicus were analyzed at different developmental stages (4, 10, and 35 days posthatching) and after long-term exposure (8 days) to increased gravity (2–4 g). Quantification of highly reactive, moderately reactive, and nonreactive mitochondria reveals differences in the cytochrome oxidase activity of various cellular structures, for example, perikarya of neurons, presynaptic terminals, and myelinated and nonmyelinated cell profiles. Cytochrome oxidase activity in the mitochondria of neuronal perikarya increases during development which parallels the differentiation of the area octavolateralis. This possibly reflects the increasing energy demand during maturation and innervation of the magnocellular nucleus. Hyper-g-exposure of the larvae for 8 days (centrifuge) caused a further augmentation of cytochrome oxidase activity in the perikarya within the nucleus magnocellularis. This may reflect an increased oxidative metabolism resulting from the need for compensation of altered inputs from gravity-sensitive epithelia in the inner ear. Another possibility is that acceleration within a centrifuge causes physiological stress for the animals and, therefore, influences the cytochrome oxidase activity in neurons. © 1993 John Wiley & Sons, Inc.  相似文献   
102.
Gangliosides are neuraminic acid-containing glycolipids preferently localized in nervous membranes and showing physicochemical peculiarities, e.g., drastically changing amphiphilic properties by Ca2+ binding. On account of this they are favorite compounds to act as modulators of membraneous organization and functions during synaptic transmission. Lipid monolayers are suitable experimental systems for the study of the surface behavior of amphipatic molecules and therefore are useful to interpret membraneous organization. The surface pressure/area isotherms of monolayers of different individual gangliosides (GM1, GD1a, GD1b, GT1b) of an artificial reconstituted and a natural ganglioside mixture from bovine brain and of ganglioside mixtures from different brain parts of summer- and winter-adapted dsungarian hamsters were compared at three temperatures (11, 20, and 37 degrees C) with egg phosphatidylcholine (PC) and phosphatidylserine (PS) monolayers. The monolayers were formed in a Teflon trough on a triethanolamine/HCl-buffered (pH 7.4) subphase, in some cases containing different amounts of CaCl2. The surface pressure/area isotherms of ganglioside monolayers, in contrast to phospholipids, generally showed slowly rising slopes, with transitions from the liquid-expanded to the liquid-condensed state at a surface pressure of 20-30 mN/m. Ganglioside monolayers, in particular from GD1a or GT1b versus GD1b or from mixtures from summer- versus winter-adapted hamster brain, were differently affected by temperature and/or by Ca2+. PS monolayers were slightly condensed only by Ca2+. PC monolayers, however, were influenced neither by temperature nor by Ca2+. In mixed monolayers of the unpolar natural lipid cholesterol (Ch) and the disialoganglioside GD1a, intermolecular interactions were indicated. Ganglioside monolayers, in contrast to phospholipids, were shown to be easily modulated by temperature and/or Ca2+ ions, thus enabling gangliosides to act as possible membrane modulators, e.g., during synaptic transmission. In particular, the differences concerning the influences of temperature and/or Ca2+ on the surface behavior of ganglioside mixtures from the brain of summer- compared with winter-adapted hamsters are correlated with other physiologically relevant data.  相似文献   
103.
The ganglioside pattern of seven different regions, olfactory bulb, forebrain cortex, midbrain (corpora quadrigemina), cerebellum, brain stem, pons and spinal cord, of nervous system of normothermic and hibernating dormice (Glis glis) were investigated by two dimensional thin layer chromatography and densitometric quantification. Up to thirty different ganglioside spots were resolved, fifteen of which belonging to alkali labile species. Alkali labile gangliosides were present in all the regions obtained from normothermic animals, and their content, expressed as percentage of total ganglioside-bound sialic acid, ranged from a minimum of 10.2% in olfactory bulb, to a maximum of 30.1% in spinal cord. The most abundant alkali labile gangliosides were O-Ac-GT1b, O-Ac-GQ1b and an unidentified one, we coded I3. Alkali labile gangliosides were practically undetectable in hibernating dormice. They could be recognized only in brain stem, 3.3% and olfactory bulb, 0.6%.  相似文献   
104.
Comparative studies on brain gangliosides of more than 60 vertebrate species show correlations between concentration and the level of evolutionary organization: poikilothermic lower vertebrates (fish, amphibs, reptiles) contain about 110 to 700 μg ganglioside bound NeuAc/g. fresh wt., homeothermic birds and mammals, on the other side, 500 to 1000 μg. The composition of brain gangliosides in poikilotherms is much more complex and variable (more multisialogangliosides) as compared with homeotherms (domination of less polar fractions). There are distinct correlations between brain ganglioside composition and state of thermal adaptation: Fishes being adapted to habitates with extreme temperatures (antarctic icefish — tropic fish) are characterized by quite opposite ganglioside patterns (domination of high versus less polar fractions). During seasonal acclimatization and experimental acclimation of fish to cold or during hibernation and early postnatal development of mammals poly-sialylations of brain gangliosides occur. With regard to this the individual brain structures react differently.

The results are taken for evidence that variations in the composion of synaptic membrane-bound gangliosides may induce long-term alterations in viscosity and permeability of the neuronal membrane by which the neuronal transmission might be kept on a constant level during the process of temperature adaptation.  相似文献   

105.
One to forty days after optic nerve transection, goldfish received an i.p. injection of [3H]proline (proteins), 3HNAcGluc (gangliosides) or [3H]thymidine (DNA). After 1 or 2 days of incorporation, both optic systems were analyzed by biochemical and autoradiographical procedures. In the regenerating retina an enhanced retinal mitotic activity, protein synthesis (up to 2-fold) and ganglioside synthesis (up to 1.5-fold) was found. Simultaneously, a transiently enhanced accumulation (up to 4.5-fold) of axonally transported protein- and ganglioside-bound radioactivity in the regenerating optic nerve stump occurred. These regeneration-related proliferative and metabolic changes were found to be maximal at 6-8 days post lesion, but still measurable after 40 days. Concerning the endogenous ganglioside metabolism, in the regenerating retina no obvious change in ganglioside synthesis and composition could be observed, while in the regenerating optic nerve there was an enhanced accumulation of the ganglioside GP1c. Daily i.p. application of a ganglioside mixture from bovine brain (GMix) or of the monosialoganglioside GM1, did not alter significantly the degree and time course of the above regeneration induced metabolic changes or the regain of visual acuity. Sprouting activity of goldfish retinal explants was found to strongly depend upon a conditioning lesion of the optic nerve, reaching a maximum 8 days after nerve transection. This result strictly coincided with the profile of metabolic changes observed in vivo. Again, daily i.p. or i.o. injection of exogenous gangliosides did not influence the lesion induced increase of retinal sprouting activity. However, in normal, not regenerating animals, a local i.o. injection of GMix or GM1 led to a significant enhancement of the "basal" sprouting activity, normally occurring after lesion of the retina after injection of 0.9% NaCl. This ganglioside related stimulation was maximal at low concentrations (3 micrograms/eye) and did not occur at high concentrations (> 30 micrograms/eye). Injection of the phospholipid phosphatidylcholine or phosphatidylserine had no or a slightly inhibitory effect, when compared to NaCl controls. These data suggest an involvement of gangliosides in the complex process of induction of axonal sprouting.  相似文献   
106.
107.
The influence of season, photoperiod and ambient temperature on the content of proteins, sialo-glycoproteins and gangliosides and on the composition of gangliosides of three different brain regions (cortex, cerebellum and basalbrain) of the Djungarian dwarf hamster (Phodopus sungorus) had been investigated. Concomittantly changes in body wt and fur colouration were recorded. Dwarf hamsters living under natural photoperiod and ambient temperature conditions ("outside") showed a distinct annual cycle in body wt (summer: about 45 g; winter: about 25 g) and fur colouration (summer: dark grey; winter: whitish). Among the three brain regions the mean concentration of proteins ranged between 120 and 155 mg protein/g wet wt. The sialo-glycoprotein content varied between 260 and 410 micrograms NeuAc/g wet wt, and that of gangliosides between 800 and 1650 micrograms NeuAc/g wet wt. Seasonal fluctuations were not found. The composition of brain gangliosides remained uninfluenced throughout the year in the cerebellum, whereas seasonal variations were observed in cortex and basalbrain. Consequently the concentration ratio of the two major mammalian ganglioside fractions GD1a vs GT1b remained almost stable in cerebellum (0.3). In contrast to this the seasonal values of cortex and basalbrain changed from 0.6 and 0.8 in winter to 0.7 and 1.1 in summer. This indicated a higher polarity of the gangliosides in these brain regions during cold adaptation. The results are discussed with regard to modulatory functions of neuronal gangliosides for the process of synaptic transmission during seasonal adaptation.  相似文献   
108.
Summary Electrophysiological methods were used to examine the effectiveness of food odors in stimulating different olfactory receptor types inPeriplaneta.The sense cells occur in certain fixed combinations in particular sensilla, thus defining a physiological sensillum type.The substances used as stimuli were chopped samples of foods of plant and animal origin.Each of the receptor types investigated responded to several kinds of food. No receptor type was observed to respond specifically to one kind only.Because the food odors always contain compounds included in the response spectra of several cell types, it must be assumed that inPeriplaneta the recognition of food odors depends not on the detection of key odors but on the complicated patterns of excitation in the receptors of different types that arise from differences in the combination of unspecific odor components.The components of an odor are not present in constant quantities over a period of time. Accordingly, the measured response profiles of the receptors vary. However, these variations are never so great that a substance strongly effective on one trial is ineffective on another.  相似文献   
109.
A novel reactor configuration was investigated for anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW). An anaerobic hyper-thermophilic (68 degrees C) reactor R68 was implemented as a post-treatment step for the effluent of a thermophilic reactor R1 (55 degrees C) in order to enhance hydrolysis of recalcitrant organic matter, improve sanitation and ease the stripping of ammonia from the reactor. The efficiency of the combined system was studied in terms of methane yield, volatile solids (VS) reduction, and volatile fatty acid (VFA) production at different hydraulic retention times (HRT). A single-stage thermophilic (55 degrees C) reactor R2 was used as control. VS reduction and biogas yield of the combined system was 78-89% and 640-790 mL/g VS, respectively. While the VS reduction in the combined system was up to 7% higher than in the single-stage treatment, no increase in methane yield was observed. Shifting the HRT of the hyper-thermophilic reactor from 5 days to 3 days resulted in a drop in the methanogenic activity in the hydrolysis reactor to a minimum. Operation of R68 at HRTs of 24-48 h was sufficient to achieve high VS conversion into VFAs. Removal of pathogens was enhanced by the hyper-thermophilic post-treatment. 7% of the ammonia load was removed in the hyper-thermophilic reactor with a flow of headspace gas through the reactor equivalent to four times the biogas flow produced in reactor R1.  相似文献   
110.
Structural basis of eukaryotic gene transcription   总被引:7,自引:0,他引:7  
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号