首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   929篇
  免费   95篇
  国内免费   2篇
  2023年   4篇
  2022年   10篇
  2021年   16篇
  2020年   10篇
  2019年   8篇
  2018年   20篇
  2017年   9篇
  2016年   12篇
  2015年   59篇
  2014年   48篇
  2013年   55篇
  2012年   76篇
  2011年   55篇
  2010年   47篇
  2009年   29篇
  2008年   41篇
  2007年   55篇
  2006年   45篇
  2005年   57篇
  2004年   44篇
  2003年   45篇
  2002年   33篇
  2001年   25篇
  2000年   19篇
  1999年   28篇
  1998年   11篇
  1997年   10篇
  1996年   8篇
  1995年   6篇
  1994年   7篇
  1993年   3篇
  1992年   10篇
  1991年   16篇
  1990年   14篇
  1989年   13篇
  1988年   6篇
  1987年   10篇
  1986年   6篇
  1985年   8篇
  1984年   7篇
  1983年   8篇
  1981年   3篇
  1979年   7篇
  1978年   2篇
  1977年   4篇
  1976年   5篇
  1973年   2篇
  1972年   2篇
  1968年   2篇
  1965年   1篇
排序方式: 共有1026条查询结果,搜索用时 31 毫秒
61.
62.
Experiments were performed to evaluate the effects of alkaline environmental pH on urea and ammonia excretion rates and on tissue urea, ammonia, and free amino acid concentrations in two mudskippers, Periophthalmodon schlosseri and Boleophthalmus boddaerti. Periophthalomodon schlosseri is known to be capable of actively excreting ammonia. The rate of ammonia excretion in B. boddaerti exposed to 50% seawater (brackish water, BW) at pH 9 decreased significantly during the first 2 d of exposure when compared with that of specimens exposed to pH 7 or 8. This suggested that B. boddaerti was dependent on NH(3) diffusion for ammonia excretion, as in most fishes. It was incapable of detoxifying the accumulating endogenous ammonia to urea but could store and tolerate high concentrations of ammonia in the muscle, liver, and plasma. It did not undergo reductions in proteolysis and/or amino acid catabolism in alkaline water, probably because the buildup of endogenous ammonia was essential for the recovery of the normal rate of ammonia excretion by the third day of exposure to a pH 9 medium. Unlike B. boddaerti, P. schlosseri did not accumulate ammonia in the body at an alkaline pH (i.e., pH 9) because it was capable of actively excreting ammonia. Periophthalmodon schlosseri did not undergo partial amino acid catabolism (no accumulation of alanine) either, although there might be a slight reduction in amino acid catabolism in general. The significant decrease in blood pCO(2) in B. boddaerti at pH 9 might lead to respiratory alkalosis in the blood. In contrast, P. schlosseri was able to maintain its blood pH in BW at pH 9 despite a decrease in pCO(2) in the blood. With 8 mM NH(4)Cl in BW at pH 7, both mudskippers could actively excrete ammonia, although not to the same extent. Only P. schlosseri could sustain ammonia excretion against 8 mM NH(4)Cl in BW at pH 8. In BW containing 8 mM NH(4)Cl at pH 9, both mudskippers died within a short period of time. Boleophthalmus boddaerti consistently died faster than did P. schlosseri. This indicates that the body surfaces of these mudskippers were permeable to NH(3), but the skin of P. schlosseri might be less permeable to NH(3) than that of B. boddaerti. Both mudskippers excreted acid (H(+)) to alter the pH of the alkaline external medium. Such a capability, together with modifications in gill morphology and morphometry as in P. schlosseri, might be essential to the development of an effective mechanism for the active excretion of NH+4.  相似文献   
63.
In this paper, we design a heuristic algorithm of computing a constrained multiple sequence alignment (CMSA for short) for guaranteeing that the generated alignment satisfies the user-specified constraints that some particular residues should be aligned together. If the number of residues needed to be aligned together is a constant alpha, then the time-complexity of our CMSA algorithm for aligning K sequences is O(alphaKn(4)), where n is the maximum of the lengths of sequences. In addition, we have built up such a CMSA software system and made several experiments on the RNase sequences, which mainly function in catalyzing the degradation of RNA molecules. The resulting alignments illustrate the practicability of our method.  相似文献   
64.
Ip SC  Bregu M  Barre FX  Sherratt DJ 《The EMBO journal》2003,22(23):6399-6407
DNA replication results in interlinked (catenated) sister duplex molecules as a consequence of the intertwined helices that comprise duplex DNA. DNA topoisomerases play key roles in decatenation. We demonstrate a novel, efficient and directional decatenation process in vitro, which uses the combination of the Escherichia coli XerCD site-specific recombination system and a protein, FtsK, which facilitates simple synapsis of dif recombination sites during its translocation along DNA. We propose that the FtsK-XerCD recombination machinery, which converts chromosomal dimers to monomers, may also function in vivo in removing the final catenation links remaining upon completion of DNA replication.  相似文献   
65.
Bostrichthys sinensis inhabits brackish water, living in the crevices of the river mouths of Shang Xi and Guangdong, China. In its natural habitat, it may encounter aerial exposure frequently during low tides, and it usually remains quiescent in the absence of water. Upon aerial exposure in the laboratory, the ammonia excretion rate decreased to one-fourth that of the submerged control. Although all the enzymes of the ornithine-urea cycle were detected in the liver of this fish, the activity of hepatic carbamoyl phosphate synthetase was too low for the cycle to be functioning. Indeed, ammonia accumulated in the tissues and was not converted to urea. Results indicate that ammonia produced through amino acid catabolism was detoxified to glutamine during the first 24 h of aerial exposure. The excess amount of glutamine stored in the muscle during this period couldaccount approximately for the reduction in ammonia equivalent excreted. There was indeed a significant increase in the activity of glutamine synthetase from the liver of specimens exposed to terrestrial conditions. In contrast to the production of alanine, formation of glutamine is energetically expensive. Since B. sinensis remained relatively inactive on land, the reduction in energy demand for muscular activity might provide it with the opportunity to exploit glutamine formation as a means to detoxify ammonia. After 72 h of aerial exposure, B. sinensis reduced internal ammonia production, possibly through reductions in proteolysis and amino acid catabolism, to avoid excessive accumulation of ammonia.  相似文献   
66.
67.
68.
The effects of schisandrin B (Sch B), a dibenzocyclooctadiene derivative isolated from the fruit of Schisandra chinensis, and dimethyl diphenyl bicarboxylate (DDB), a synthetic intermediate of schisandrin C (also a dibenzocyclooctadiene derivative), on hepatic mitochondrial glutathione redox status in control and carbon tetrachloride (CCl4)-intoxicated mice were examined. Treating mice with Sch B or DDB at a daily oral dose of 1 mmol/kg for 3 d did not produce any significant alterations in plasma alanine aminotransferase (ALT) and sorbital dehydrogenase (SDH) activities. CCl4 treatment caused drastic increases in both plasma ALT and SDH activities in mice. Pretreating mice with Sch B or DDB at the same dosage regimen significantly suppressed the CCl4-induced increase in plasma ALT activity, with the inhibitory effect of Sch B being much more potent. Sch B, but not DDB, pretreatment could also decrease the plasma SDH activity in CCl4-intoxicated mice. The lowering of plasma SDH activity, indicative of hepatoprotection against CCl4 toxicity, by Sch B pretreatment was associated with an enhancement in hepatic mitochondrial glutathione redox status as well as an increase in mitochondrial glutathione reductase (mtGRD) activity in both non-CCl4 and CCl4-treated mice. DDB pretreatment, though enhancing both hepatic mitochondrial glutathione redox status and mtGRD activity in control animals, did not produce any beneficial effect in CCl4-treated mice. The difference in hepatoprotective action against CCl4 toxicity between Sch B and DDB may therefore be related to their ability to maintain hepatic mitochondrial glutathione redox status under oxidative stress condition.  相似文献   
69.
To investigate the functional role of the nonhelical domains of the intermediate filament (IF) protein vimentin, we carried out transient transfection of constructs encoding fusion proteins of these domains with enhanced green fluorescent protein (EGFP). Expression of these fusion proteins did not have any effect on the endogenous IF networks of transfected cells. However, the head domain-EGFP fusion protein localized almost exclusively to the nucleus. This localization could be disrupted in a reversible fashion by chilling cells. Furthermore, the head domain was capable of targeting to the nucleus a strictly cytoplasmic protein, pyruvate kinase. Thus, the vimentin head domain contains information that specifically directs proteins into the nucleus. In contrast, the nonhelical tail domain of vimentin, when expressed as a fusion protein with EGFP, was retained in the cytoplasm. Cytoplasmic retention of tail domain-containing fusion proteins appeared to be dependent on the integrity of the microtubule network. Our results are consistent with a proposal that the nonhelical end domains of vimentin are involved in maintaining an extended IF network by exerting oppositely directed forces along the filaments. The head domains exert a nuclear-directed force while the tail domains extend the IF network toward the cell periphery via a microtubule-dependent mechanism.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号