首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   513篇
  免费   49篇
  国内免费   1篇
  2022年   4篇
  2021年   12篇
  2020年   5篇
  2019年   4篇
  2018年   11篇
  2017年   10篇
  2016年   9篇
  2015年   16篇
  2014年   30篇
  2013年   29篇
  2012年   41篇
  2011年   16篇
  2010年   28篇
  2009年   29篇
  2008年   34篇
  2007年   21篇
  2006年   28篇
  2005年   24篇
  2004年   27篇
  2003年   19篇
  2002年   10篇
  2001年   13篇
  2000年   11篇
  1999年   13篇
  1998年   6篇
  1997年   5篇
  1996年   8篇
  1994年   2篇
  1993年   3篇
  1992年   7篇
  1991年   7篇
  1990年   14篇
  1989年   6篇
  1988年   9篇
  1987年   6篇
  1986年   5篇
  1985年   6篇
  1984年   4篇
  1982年   6篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1978年   4篇
  1977年   1篇
  1975年   1篇
  1974年   2篇
  1971年   4篇
  1969年   1篇
  1967年   2篇
  1966年   1篇
排序方式: 共有563条查询结果,搜索用时 241 毫秒
81.
The amyloid beta-protein precursor (APP) of Alzheimer's disease (AD) is cleaved either by alpha-secretase to generate an N-terminally secreted fragment, or by beta- and gamma-secretases to generate the beta-amyloid protein (Abeta). The accumulation of Abeta in the brain is an important step in the pathogenesis of AD. Alternative mRNA splicing can generate isoforms of APP which contain a Kunitz protease inhibitor (KPI) domain. However, little is known about the physiological function of this domain. In the present study, the metabolic turnover of APP was examined in cultured chick sympathetic neurons. APP was labelled by incubating neurons for 5 h with [35S]methionine and [35S]cysteine. Intracellular labelled APP decayed in a biphasic pattern suggesting that trafficking occurs through two metabolic compartments. The half-lives for APP in each compartment were 1.5 and 5.7 h, respectively. A small fraction (10%) of the total APP was secreted into the culture medium where it was degraded with a half-life of 9 h. Studies using specific protease inhibitors demonstrated that this extracellular breakdown was due to cleavage by a trypsin-like serine protease that was secreted into the culture medium. Significantly, this protease was inhibited by a recombinant isoform of APP (sAPP751), which contains a region homologous to the Kunitz protease inhibitor (KPI) domain. These results suggest that KPI forms of APP regulate extracellular cleavage of secreted APP by inhibiting the activity of a secreted APP-degrading protease.  相似文献   
82.
In this research, we characterized the histopathological impact of dengue virus (serotype DENV-2) infection in livers of BALB/c mice. The mice were infected with different doses of DENV-2 via intraperitoneal injection and liver tissues were processed for histological analyses and variation was documented. In the BALB/c mouse model, typical liver tissues showed regular hepatocyte architecture, with normal endothelial cells surrounding sinusoid capillary. Based on histopathological observations, the liver sections of BALB/c mice infected by DENV-2 exhibited a loss of cell integrity, with a widening of the sinusoidal spaces. There were marked increases in the infiltration of mononuclear cells. The areas of hemorrhage and micro- and macrovesicular steatosis were noted. Necrosis and apoptosis were abundantly present. The hallmark of viral infection, i.e., cytopathic effects, included intracellular edema and vacuole formation, cumulatively led to sinusoidal and lobular collapse in the liver. The histopathological studies on autopsy specimens of fatal human DENV cases are important to shed light on tissue damage for preventive and treatment modalities, in order to manage future DENV infections. In this framework, the method present here on BALB/c mouse model may be used to study not only the effects of infections by other DENV serotypes, but also to investigate the effects of novel drugs, such as recently developed nano-formulations, and the relative recovery ability with intact immune functions of host.  相似文献   
83.
MIP-T3 is a human protein found previously to associate with microtubules and the kinesin-interacting neuronal protein DISC1 (Disrupted-in-Schizophrenia 1), but whose cellular function(s) remains unknown. Here we demonstrate that the C. elegans MIP-T3 ortholog DYF-11 is an intraflagellar transport (IFT) protein that plays a critical role in assembling functional kinesin motor-IFT particle complexes. We have cloned a loss of function dyf-11 mutant in which several key components of the IFT machinery, including Kinesin-II, as well as IFT subcomplex A and B proteins, fail to enter ciliary axonemes and/or mislocalize, resulting in compromised ciliary structures and sensory functions, and abnormal lipid accumulation. Analyses in different mutant backgrounds further suggest that DYF-11 functions as a novel component of IFT subcomplex B. Consistent with an evolutionarily conserved cilia-associated role, mammalian MIP-T3 localizes to basal bodies and cilia, and zebrafish mipt3 functions synergistically with the Bardet-Biedl syndrome protein Bbs4 to ensure proper gastrulation, a key cilium- and basal body-dependent developmental process. Our findings therefore implicate MIP-T3 in a previously unknown but critical role in cilium biogenesis and further highlight the emerging role of this organelle in vertebrate development.  相似文献   
84.
In the type III secretion system (T3SS) of Aeromonas hydrophila, the putative needle complex subunit AscF requires both putative chaperones AscE and AscG for formation of a ternary complex to avoid premature assembly. Here we report the crystal structure of AscE at 2.7 A resolution and the mapping of buried regions of AscE, AscG, and AscF in the AscEG and AscEFG complexes using limited protease digestion. The dimeric AscE is comprised of two helix-turn-helix monomers packed in an antiparallel fashion. The N-terminal 13 residues of AscE are buried only upon binding with AscG, but this region is found to be nonessential for the interaction. AscE functions as a monomer and can be coexpressed with AscG or with both AscG and AscF to form soluble complexes. The AscE binding region of AscG in the AscEG complex is identified to be within the N-terminal 61 residues of AscG. The exposed C-terminal substrate-binding region of AscG in the AscEG complex is induced to be buried only upon binding to AscF. However, the N-terminal 52 residues of AscF remain exposed even in the ternary AscEFG complex. On the other hand, the 35-residue C-terminal region of AscF in the complex is resistant to protease digestion in the AscEFG complex. Site-directed mutagenesis showed that two C-terminal hydrophobic residues, Ile83 and Leu84, of AscF are essential for chaperone binding.  相似文献   
85.
β-catenin is a key mediator of the Wnt signaling process and accumulates in the nucleus and at the membrane in response to Wnt-mediated inhibition of GSK-3β. In this study we used live cell photobleaching experiments to determine the dynamics and rate of recruitment of β-catenin at membrane adherens junctions (cell adhesion) and membrane ruffles (cell migration). First, we confirmed the nuclear-cytoplasmic shuttling of GFP-tagged β-catenin, and found that a small mobile pool of β-catenin can move from the nucleus to membrane ruffles in NIH 3T3 fibroblasts with a t0.5 of ~ 30 s. Thus, β-catenin can shuttle between the nucleus and plasma membrane. The localized recruitment of β-catenin-GFP to membrane ruffles was more rapid, and the strong recovery observed after bleaching (mobile fraction 53%, t0.5 ~5 s) is indicative of high turnover and transient association. In contrast, β-catenin-GFP displayed poor recovery at adherens junctions in MDCK epithelial cells (mobile fraction 10%, t0.5 ~8 s), indicating stable retention at these membrane structures. We previously identified IQGAP1 as an upstream regulator of β-catenin at the membrane, and this is supported by photobleaching assays which now reveal IQGAP1 to be more stably anchored at membrane ruffles than β-catenin. Further analysis showed that LiCl-mediated inactivation of the kinase GSK-3β increased β-catenin membrane ruffle staining; this correlated with a faster rate of recruitment and not increased membrane retention of β-catenin. In summary, β-catenin displays a high turnover rate at membrane ruffles consistent with its dynamic internalization and recycling at these sites by macropinocytosis.  相似文献   
86.
Mesenchymal stem cells (MSCs) are multipotent cells, which have the capability to differentiate into various mesenchymal tissues such as bone, cartilage, fat, tendon, muscle, and marrow stroma. However, they lose the capability of multi‐lineage differentiation after several passages. It is known that basic fibroblast growth factor (bFGF) increases growth rate, differentiation potential, and morphological changes of MSCs in vitro. In this report, we have used 2‐DE coupled to MS to identify differentially expressed proteins at the cell membrane level in MSCs growing in bFGF containing medium. The cell surface proteins isolated by the biotin–avidin affinity column were separated by 2‐DE in triplicate experiments. A total of 15 differentially expressed proteins were identified by quadrupole‐time of flight tandem MS. Nine of the proteins were upregulated and six proteins were downregulated in the MSCs cultured with bFGF containing medium. The expression level of three actin‐related proteins, F‐actin‐capping protein subunit alpha‐1, actin‐related protein 2/3 complex subunit 2, and myosin regulatory light chain 2, was confirmed by Western blot analysis. The results indicate that the expression levels of F‐actin‐capping protein subunit alpha‐1, actin‐related protein 2/3 complex subunit 2, and myosin regulatory light chain 2 are important in bFGF‐induced morphological change of MSCs.  相似文献   
87.
88.

Background  

While the larval-juvenile transition (metamorphosis) in the spionid polychaete Pseudopolydora vexillosa involves gradual morphological changes and does not require substantial development of juvenile organs, the opposite occurs in the barnacle Balanus amphitrite. We hypothesized that the proteome changes during metamorphosis in the spionids are less drastic than that in the barnacles. To test this, proteomes of pre-competent larvae, competent larvae (ready to metamorphose), and juveniles of P. vexillosa were compared using 2-dimensional gel electrophoresis (2-DE), and they were then compared to those of the barnacle.  相似文献   
89.
90.
The conventional method of culturing human embryonic stem cells (hESC) is on two-dimensional (2D) surfaces, which is not amenable for scale up to therapeutic quantities in bioreactors. We have developed a facile and robust method for maintaining undifferentiated hESC in three-dimensional (3D) suspension cultures on matrigel-coated microcarriers achieving 2- to 4-fold higher cell densities than those in 2D colony cultures. Stable, continuous propagation of two hESC lines on microcarriers has been demonstrated in conditioned media for 6 months. Microcarrier cultures (MC) were also demonstrated in two serum-free defined media (StemPro and mTeSR1). MC achieved even higher cell concentrations in suspension spinner flasks, thus opening the prospect of propagation in controlled bioreactors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号