首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3446篇
  免费   283篇
  国内免费   3篇
  2023年   13篇
  2022年   14篇
  2021年   36篇
  2020年   31篇
  2019年   51篇
  2018年   52篇
  2017年   40篇
  2016年   67篇
  2015年   105篇
  2014年   167篇
  2013年   167篇
  2012年   219篇
  2011年   207篇
  2010年   161篇
  2009年   148篇
  2008年   215篇
  2007年   228篇
  2006年   209篇
  2005年   218篇
  2004年   191篇
  2003年   167篇
  2002年   190篇
  2001年   58篇
  2000年   42篇
  1999年   42篇
  1998年   49篇
  1997年   34篇
  1996年   35篇
  1995年   40篇
  1994年   30篇
  1993年   35篇
  1992年   27篇
  1991年   29篇
  1990年   28篇
  1989年   24篇
  1988年   23篇
  1987年   18篇
  1986年   11篇
  1985年   30篇
  1984年   24篇
  1983年   17篇
  1982年   23篇
  1981年   16篇
  1980年   26篇
  1979年   11篇
  1978年   14篇
  1977年   13篇
  1976年   13篇
  1974年   14篇
  1973年   11篇
排序方式: 共有3732条查询结果,搜索用时 275 毫秒
141.
The acquisition of regulatory proteins is a means of blood‐borne pathogens to avoid destruction by the human complement. We recently showed that the gametes of the human malaria parasite Plasmodium falciparum bind factor H (FH) from the blood meal of the mosquito vector to assure successful sexual reproduction, which takes places in the mosquito midgut. While these findings provided a first glimpse of a complex mechanism used by Plasmodium to control the host immune attack, it is hitherto not known, how the pathogenic blood stages of the malaria parasite evade destruction by the human complement. We now show that the human complement system represents a severe threat for the replicating blood stages, particularly for the reinvading merozoites, with complement factor C3b accumulating on the surfaces of the intraerythrocytic schizonts as well as of free merozoites. C3b accumulation initiates terminal complement complex formation, in consequence resulting in blood stage lysis. To inactivate C3b, the parasites bind FH as well as related proteins FHL‐1 and CFHR‐1 to their surface, and FH binding is trypsin‐resistant. Schizonts acquire FH via two contact sites, which involve CCP modules 5 and 20. Blockage of FH‐mediated protection via anti‐FH antibodies results in significantly impaired blood stage replication, pointing to the plasmodial complement evasion machinery as a promising malaria vaccine target.  相似文献   
142.
143.
Purinergic Signalling - Dysfunction of the pulmonary endothelium is associated with most lung diseases. Extracellular nucleotides modulate a plethora of endothelial functions in the lung such as...  相似文献   
144.
Salt‐enhanced cultivation as a morphology engineering tool for the filamentous actinomycete Actinomadura namibiensis was evaluated in 500‐mL shaking flasks (working volume 100 mL) with the aim of increasing the concentration of the pharmaceutically interesting peptide labyrinthopeptin A1. Among the inorganic salts added to a complex production medium, the addition of (NH4)2SO4 led to the highest amount of labyrinthopeptin A1 production. By using 50 mM (NH4)2SO4, the labyrinthopeptin A1 concentration increased up to sevenfold compared to the non‐supplemented control, resulting in 325 mg L?1 labyrinthopeptin A1 after 10 days of cultivation. The performance of other ammonium‐ and sulfate‐containing salts (e.g., NH4Cl, K2SO4) was much lower than the performance of (NH4)2SO4. A positive correlation between the uptake of glycerol as one of the main carbon sources and nongrowth‐associated labyrinthopeptin productivity was found. The change in the cell morphology of A. namibiensis in conjunction with increased osmolality by the addition of 50 mM (NH4)2SO4, was quantified by image analysis. A. namibiensis always developed a heterogeneous morphology with pellets and loose mycelia present simultaneously. In contrast to the non‐supplemented control, the morphology of (NH4)2SO4‐supplemented cultures was characterized by smaller and circular pellets that were more stable against disintegration in the stationary production phase.  相似文献   
145.
Industrial plant biotechnology applications include the production of sustainable fuels, complex metabolites and recombinant proteins, but process development can be impaired by a lack of reliable and scalable screening methods. Here, we describe a rapid and versatile expression system which involves the infusion of Agrobacterium tumefaciens into three‐dimensional, porous plant cell aggregates deprived of cultivation medium, which we have termed plant cell packs (PCPs). This approach is compatible with different plant species such as Nicotiana tabacum BY2, Nicotiana benthamiana or Daucus carota and 10‐times more effective than transient expression in liquid plant cell culture. We found that the expression of several proteins was similar in PCPs and intact plants, for example, 47 and 55 mg/kg for antibody 2G12 expressed in BY2 PCPs and N. tabacum plants respectively. Additionally, the expression of specific enzymes can either increase the content of natural plant metabolites or be used to synthesize novel small molecules in the PCPs. The PCP method is currently scalable from a microtiter plate format suitable for high‐throughput screening to 150‐mL columns suitable for initial product preparation. It therefore combined the speed of transient expression in plants with the throughput of microbial screening systems. Plant cell packs therefore provide a convenient new platform for synthetic biology approaches, metabolic engineering and conventional recombinant protein expression techniques that require the multiplex analysis of several dozen up to hundreds of constructs for efficient product and process development.  相似文献   
146.
147.
148.
149.
The performance of biocatalytic reactions is often hampered by product and/or substrate toxicity and short-term reaction times due to instable biocatalysts. Microbes in biofilms show a remarkable resistance against biocides and form stable communities. In nature, especially in environments characterized by harsh conditions such as heavily contaminated sites, cells grow pre-dominantly in biofilms, which enable them to cope with physiological stress. This robustness was utilized to design a bioprocess concept based on catalytic biofilms for stable long-term transformations of toxic reactants. Sixty-nine bacterial strains have been screened to find organisms suitable for biofilm-based biotransformations. This included host strains important for recombinant enzyme expression and strains isolated from biofilters or contaminated soils. Nearly all organisms with bioremediation potential showed good biofilm forming capacities. Pseudomonas sp. strain VLB120DeltaC was chosen as a model organism due to its excellent biofilm forming capacity and its well-studied capability of catalyzing asymmetric epoxidations. A tubular reactor was used for the biotransformation of styrene to (S)-styrene oxide as a model reaction. The process was stable for at least 55 days at a maximal volumetric productivity of 16 g/(L(aq) day) and a yield of 9 mol%. In situ product extraction prevented product inhibition of the catalyst. Biofilm physiology and dynamics are characterized during the biotransformation and limitations and advantages of this reaction concept are discussed.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号