首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   253篇
  免费   12篇
  2023年   1篇
  2022年   4篇
  2021年   10篇
  2020年   6篇
  2019年   5篇
  2018年   7篇
  2017年   1篇
  2016年   7篇
  2015年   13篇
  2014年   16篇
  2013年   14篇
  2012年   27篇
  2011年   28篇
  2010年   11篇
  2009年   10篇
  2008年   16篇
  2007年   23篇
  2006年   15篇
  2005年   18篇
  2004年   11篇
  2003年   9篇
  2002年   4篇
  2001年   2篇
  1999年   1篇
  1998年   3篇
  1996年   2篇
  1995年   1篇
排序方式: 共有265条查询结果,搜索用时 15 毫秒
231.
The processing of luteinizing hormone receptor (LHR) shows marked differences in different species. While the human LHR is predominantly expressed as the mature, 90 kDa species, rat LHR exists mostly in the 70 kDa precursor form. Since the extracellular domain of the LHR is unusually large in comparison with other G protein-coupled receptors, the present studies examined the role of extracellular domain in its processing. FLAG-tagged chimeric LH receptors were constructed by substituting the extracellular domain of the human receptor in rat LHR (hrr) and the extracellular domain of the rat receptor in human LHR (rhh). The intracellular processing, ligand binding and recycling of the chimeric receptors were compared with that of the wild type receptors in 293T cells. The results showed that the human and rat LHR were expressed predominantly as 90 and 70 kDa species, respectively, as expected. The introduction of the rat extracellular domain into the human LHR (rhh) decreased the abundance of the mature form with an increase in the precursor form. Conversely, substitution of the extracellular domain of the rat LHR by the extracellular domain of the human LHR (hrr) led to an increase in the mature form with a corresponding decrease in the precursor form. Changes were also observed in the ligand binding and recycling of the wild type and chimeric receptors. These results suggest that the extracellular domain of the LHR is one of the determinants that confer its ability for proper maturation and cell surface expression.  相似文献   
232.
Gunnera plants have the unique ability to form endosymbioses with N2-fixing cyanobacteria, primarily Nostoc. Cyanobacteria enter Gunnera through transiently active mucilage-secreting glands on stems. We took advantage of the nitrogen (N)-limitation-induced gland development in Gunnera manicata to identify factors that may enable plant tissue to attract and maintain cyanobacteria colonies. Cortical cells in stems of N-stressed Gunnera plants were found to accumulate a copious amount of starch, while starch in the neighboring mature glands was nearly undetectable. Instead, mature glands accumulated millimolar concentrations of glucose (Glc) and fructose (Fru). Successful colonization by Nostoc drastically reduced sugar accumulation in the surrounding tissue. Consistent with the abundance of Glc and Fru in the gland prior to Nostoc colonization, genes encoding key enzymes for sucrose and starch hydrolysis (e.g. cell wall invertase, α-amylase, and starch phosphorylase) were expressed at higher levels in stem segments with glands than those without. In contrast, soluble sugars were barely detectable in mucilage freshly secreted from glands. Different sugars affected Nostoc’s ability to differentiate motile hormogonia in a manner consistent with their locations. Galactose and arabinose, the predominant constituents of polysaccharides in the mucilage, had little or no inhibitory effect on hormogonia differentiation. On the other hand, soluble sugars that accumulated in gland tissue, namely sucrose, Glc, and Fru, inhibited hormogonia differentiation and enhanced vegetative growth. Results from this study suggest that, in an N-limited environment, mature Gunnera stem glands may employ different soluble sugars to attract Nostoc and, once the cyanobacteria are internalized, to maintain them in the N2-fixing vegetative state.Nitrogen (N) is an essential element for plant growth, but availability of reduced N in the soil is often limiting. Representatives from a wide range of land plants have evolved the ability to form associations with N2-fixing microbes (Franche et al., 2009). Associations between rhizobia and legume plants are well-characterized examples of plant-bacterial N2-fixing symbioses. Unlike rhizobia, which generally exhibit narrow host ranges (Kistner and Parniske, 2002), N2-fixing cyanobacteria are able to form productive associations with a broad range of plants, including bryophytes (hornworts and liverworts), ferns (Azolla), gymnosperms (cycads), and angiosperms (Gunnera; for review, see Rai et al., 2000; Adams et al., 2006). Free-living cyanobacteria within the genus Nostoc can fix N in specialized microoxic cells called heterocysts. The ability of Nostoc to fix N independent of a host environment may facilitate the formation of symbioses with a wide range of plants. Understanding the physiological conditions that enable a plant host to enter into symbiotic associations with cyanobacteria may allow us to extend the benefit of biological N fixation to crops outside the legume family.Nostoc has the ability to differentiate not only into filaments bearing heterocysts but also into transiently motile filaments, known as hormogonia, which enable the cyanobacteria to enter plants (Meeks and Elhai, 2002). Nostoc can be induced to form hormogonia by different environmental stimuli and by a hormogonia-inducing factor released from N-stressed host plants (Meeks and Elhai, 2002; Adams et al., 2006). The attraction of hormogonia to plants is much less specific than that of rhizobia. Hormogonia are attracted to root extracts from either host or nonhost plants and even to certain simple sugars, such as Ara, Glc, and Gal (Nilsson et al., 2006). After entering a plant host, hormogonia revert back to filaments with N2-fixing heterocysts. Inside the host, further hormogonia formation is suppressed, and heterocysts appear at a frequency of about 30% to 40%, 3- to 4-times higher than that found in free-living Nostoc (Meeks and Elhai, 2002). Although free-living Nostoc species can support N2 fixation through photosynthesis, under symbiotic conditions they rely on photosynthate from the host plant. In general, the sugars (Suc, Glc, and Fru) known to support heterotrophic growth in the dark by free-living cyanobacteria coincide with those that support nitrogenase activity in Nostoc-plant associations (Meeks and Elhai, 2002). However, the Nostoc-Gunnera association may be exceptional; only Glc and Fru have been shown to sustain nitrogenase activities (Man and Silvester, 1994; Wouters et al., 2000), although Suc anddextrin were able to keep Nostoc alive without light (Wouters et al., 2000). It is evident from cyanobacterial studies that the plant hosts have evolved the ability to regulate cyanobacterial growth and differentiation during symbiotic associations (Meeks and Elhai, 2002).However, because most studies of plant-cyanobacterial associations have focused on the cyanobacterial partner (e.g. Wang et al., 2004; Ekman et al., 2006), the mechanisms through which plant hosts attract, internalize, and maintain cyanobacteria remain to be elucidated (Adams et al., 2006).The Nostoc-Gunnera association is an ideal system with which to study plant-cyanobacteria symbioses, not only because Gunnera is the only genus of angiosperms known to form endosymbioses with N2-fixing cyanobacteria but also because the association between the two can be readily established in the laboratory (Bergman et al., 1992; Chiu et al., 2005). Nostoc hormogonia enter Gunnera plants through specialized glands located on the stem. As the gland matures, it secretes polysaccharide-rich mucilage that attracts cyanobacteria (Nilsson et al., 2006), supports their growth on the gland surface (Towata, 1985; Chiu et al., 2005), and permits further hormogonia differentiation (Rasmussen et al., 1994). From there, hormogonia enter the gland and penetrate cells near the base of the gland in the stem (Bonnett, 1990; Bergman et al., 1992). Although each gland is only transiently capable of accepting cyanobacteria, new glands continue to form on the stem at the base of each new leaf.In contrast to the development of nodules in legumes, which requires a complex exchange of signals between the two symbiotic partners (Cooper, 2007), stem gland development in Gunnera takes place in the absence of cyanobacteria (Bonnett, 1990). N limitation, however, is a prerequisite for stem gland development (Chiu et al., 2005), as it is for nodulation (Barbulova et al., 2007). We have taken advantage of the N-deficiency-induced gland development in G. manicata to identify factors that enable Gunnera to form endosymbiosis with cyanobacteria. This study investigated changes in the carbohydrate metabolism during Gunnera gland development and discovered that tissue in the mature glands accumulated high levels of soluble sugars prior to the arrival of cyanobacteria. In agreement with this finding, several key genes encoding enzymes for starch/Suc hydrolysis were expressed at higher levels in the gland compared to the stem. Furthermore, we found that various sugars cyanobacteria may encounter as they approach Gunnera glands as opposed to those they would encounter within plant cells differentially affected Nostoc’s ability to form motile hormogonia.  相似文献   
233.
234.
Cadmium (Cd) perturbs vascular health and interferes with endothelial function. However, the effects of exposing endothelial cells to low doses of Cd on the production of nitric oxide (NO) are largely unknown. The objective of the present study was to evaluate these effects by using low levels of CdCl2 concentrations, ranging from 10 to 1000 nmol/L. Cd perturbations in endothelial function were studied by employing wound-healing and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays. The results suggest that a CdCl2 concentration of 100 nmol/L maximally attenuated NO production, cellular migration, and energy metabolism in endothelial cells. An egg yolk angiogenesis model was employed to study the effect of Cd exposure on angiogenesis. The results demonstrate that NO supplementation restored Cd-attenuated angiogenesis. Immunofluorescence, Western blot, and immuno-detection studies showed that low levels of Cd inhibit NO production in endothelial cells by blocking eNOS phosphorylation, which is possibly linked to processes involving endothelial function and dysfunction, including angiogenesis.  相似文献   
235.

Background

Neurogenic inflammation plays a major role in the pathogenesis of inflammatory bowel disease (IBD). We examined the role of neuropeptide Y (NPY) and neuronal nitric oxide synthase (nNOS) in modulating colitis.

Methods

Colitis was induced by administration of dextran sodium sulphate (3% DSS) or streptomycin pre-treated Salmonella typhimurium (S.T.) in wild type (WT) and NPY (NPY−/−) knockout mice. Colitis was assessed by clinical score, histological score and myeloperoxidase activity. NPY and nNOS expression was assessed by immunostaining. Oxidative stress was assessed by measuring catalase activity, glutathione and nitrite levels. Colonic motility was assessed by isometric muscle recording in WT and DSS-treated mice.

Results

DSS/S.T. induced an increase in enteric neuronal NPY and nNOS expression in WT mice. WT mice were more susceptible to inflammation compared to NPY−/− as indicated by higher clinical & histological scores, and myeloperoxidase (MPO) activity (p<0.01). DSS-WT mice had increased nitrite, decreased glutathione (GSH) levels and increased catalase activity indicating more oxidative stress. The lower histological scores, MPO and chemokine KC in S.T.-treated nNOS−/− and NPY−/−/nNOS−/− mice supported the finding that loss of NPY-induced nNOS attenuated inflammation. The inflammation resulted in chronic impairment of colonic motility in DSS-WT mice. NPY –treated rat enteric neurons in vitro exhibited increased nitrite and TNF-α production.

Conclusions

NPY mediated increase in nNOS is a determinant of oxidative stress and subsequent inflammation. Our study highlights the role of neuronal NPY and nNOS as mediators of inflammatory processes in IBD.  相似文献   
236.
Non-ATP competitive pyrimidine-based inhibitors of CaMKIIdelta were identified. Computational studies were enlisted to predict the probable mode of binding. The results of the computational studies led to the design of ATP competitive inhibitors with optimized hinge interactions. Inhibitors of this class possessed improved enzyme and cellular activity compared to early leads.  相似文献   
237.

Background  

Analysis of human complete mitochondrial DNA sequences has largely contributed to resolve phylogenies and antiquity of different lineages belonging to the majorhaplogroups L, N and M (East-Asian lineages). In the absence of whole mtDNA sequence information of M lineages reported in India that exhibits highest diversity within the sub-continent, the present study was undertaken to provide a detailed analysis of this macrohaplogroup to precisely characterize and unravel the intricate phylogeny of the lineages and to establish the antiquity of M lineages in India.  相似文献   
238.
Changes in the synthesis and activity of matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) are associated with myocardial remodeling. Here we measured the expression and activity of MMPs and TIMPs, and tested the hypothesis that increased MMP activity plays a proapoptotic role in -adrenergic receptor (-AR)-stimulated apoptosis of adult rat ventricular myocytes (ARVMs). -AR stimulation (isoproterenol, 24 h) increased mRNA levels of MMP-2 and TIMP-1 while it decreased TIMP-2 mRNA levels as analyzed by real-time PCR. Western blot analysis, immunocytochemical analysis, in-gel zymography, and MMP-2 activity assay confirmed -AR-stimulated increases in MMP-2 protein levels and activity. Inhibition of MMPs using GM-6001 (a broad-spectrum inhibitor of MMPs), SB3CT (inhibitor of MMP-2), and purified TIMP-2 inhibited -AR-stimulated apoptosis as determined by TdT-mediated dUTP nick end labeling staining. Treatment with active MMP-2 alone increased the number of apoptotic cells. This increase in MMP-2-mediated apoptosis was inhibited by GM-6001 and SB3CT pretreatment. Coimmunoprecipitation studies indicated increased physical association of MMP-2 with 1-integrins after -AR stimulation. Inhibition of MMP-2 using SB3CT or stimulation of 1-integrin signaling using laminin inhibited the increased association of MMP-2 with 1-integrins. -AR stimulation increased poly-ADP-ribose-polymerase cleavage, which was inhibited by inhibition of MMP-2. These data suggest the following: 1) -AR stimulation increases MMP-2 expression and activity and inhibits TIMP-2 expression; 2) inhibition of MMPs, most likely MMP-2, inhibits -AR-stimulated apoptosis; and 3) the apoptotic effects of MMP-2 may be mediated, at least in part, via its interaction with 1 integrins and poly-ADP-ribose-polymerase cleavage. integrins; poly-ADP-ribose-polymerase  相似文献   
239.
Synthesis and single-crystal X-ray structural analyses of selected aminodideoxy sugars with different group substitutions at the C-2 position were carried out. Product formation and X-ray crystallographic determination of the products from C-2 substitution in both alpha and beta anomers were studied. The observed variation in pyranose ring conformations in product compounds is explained in terms of C-2 substitution.  相似文献   
240.
ToxoDB: accessing the Toxoplasma gondii genome   总被引:1,自引:0,他引:1  
ToxoDB (http://ToxoDB.org) provides a genome resource for the protozoan parasite Toxoplasma gondii. Several sequencing projects devoted to T. gondii have been completed or are in progress: an EST project (http://genome.wustl.edu/est/index.php?toxoplasma=1), a BAC clone end-sequencing project (http://www.sanger.ac.uk/Projects/T_gondii/) and an 8X random shotgun genomic sequencing project (http://www.tigr.org/tdb/e2k1/tga1/). ToxoDB was designed to provide a central point of access for all available T. gondii data, and a variety of data mining tools useful for the analysis of unfinished, un-annotated draft sequence during the early phases of the genome project. In later stages, as more and different types of data become available (microarray, proteomic, SNP, QTL, etc.) the database will provide an integrated data analysis platform facilitating user-defined queries across the different data types.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号