首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   565篇
  免费   40篇
  2022年   6篇
  2021年   4篇
  2020年   4篇
  2019年   6篇
  2018年   13篇
  2017年   5篇
  2016年   10篇
  2015年   17篇
  2014年   7篇
  2013年   43篇
  2012年   30篇
  2011年   32篇
  2010年   26篇
  2009年   17篇
  2008年   16篇
  2007年   30篇
  2006年   26篇
  2005年   31篇
  2004年   15篇
  2003年   21篇
  2002年   18篇
  2001年   19篇
  2000年   11篇
  1999年   19篇
  1998年   7篇
  1997年   12篇
  1996年   5篇
  1992年   5篇
  1991年   8篇
  1990年   7篇
  1989年   4篇
  1988年   10篇
  1987年   6篇
  1986年   8篇
  1985年   5篇
  1984年   9篇
  1983年   5篇
  1981年   5篇
  1980年   5篇
  1979年   10篇
  1978年   7篇
  1977年   4篇
  1976年   5篇
  1975年   3篇
  1974年   8篇
  1973年   5篇
  1972年   7篇
  1970年   4篇
  1968年   4篇
  1966年   3篇
排序方式: 共有605条查询结果,搜索用时 46 毫秒
81.
82.
83.
Several proteins are known to form foci at DNA sites damaged by ionizing radiation. We study DNA damage response by immunofluorescence microscopy after microirradiation of cells with energetic ions. By using microirradiation, it is possible to irradiate different regions on a single dish at different time-points and to differentiate between cells irradiated earlier and later. This allows to directly compare immunofluorescence intensities in both subsets of cells with little systematic error because both subsets are cultivated and stained under identical conditions. In addition, by using irradiation patterns such as crossing lines, it is possible to irradiate individual cells twice and to differentiate between immunofluorescence signals resulting from the cellular response to the earlier and to the later irradiation event. Here, we describe the quantitative evaluation of immunofluorescence intensities after sequential irradiation.  相似文献   
84.
Water conductance of the cuticular membrane (CM) of sweet cherry (Prunus avium L. cv. Sam) fruit during stages II and III (31-78 days after full bloom, DAFB) was investigated by gravimetrically monitoring water loss through segments of the exocarp. Segments were mounted in stainless-steel diffusion cells, filled with 0.5 ml of deionized water and incubated for 8 h at 25 +/- 2 degrees C over dry silica. Conductance was calculated by dividing the amount of water transpired per unit surface area and time by the difference in water vapor concentration across the segment (23.07 g m(-3) at 25 degrees C). Fruit mass and fruit surface area increased 4.9- and 2.8-fold between 31 and 78 DAFB, respectively. However, CM mass per unit area decreased from 3.9 to 1.5 g m(-2) and percentage of total wax content remained constant at about 31%. Stomatal density decreased from 0.8 to 0.2 mm(-2) (31-78 DAFB). Total conductance of the CM on the fruit cheek (gtot.) remained constant during stage II of development (approx. 1.38 x 10(-4) m s(-1) from 31 to 37 DAFB), increased to 1.73 x 10(-4) m s(-1) during early stage III of fruit growth (43-64 DAFB) then decreased to 0.95 x 10(-4) m s(-1) at maturity (78 DAFB). Partitioning gtot. into cuticular (gcut.) and stomatal conductance (gsto.) revealed that the relative contribution of gcut. to gtot. increased linearly from 30% to 87% of gtot. between 31 and 78 DAFB. respectively. On a whole-fruit basis, g,tot. and gcut. consistently increased up to 64 DAFB, and decreased thereafter. A significant negative linear relationship was obtained between gcut. and CM thickness, but not between the permeability coefficient (p) and CM thickness. Further, p was positively related to strain rate, suggesting that strain associated with expansion of the fruit surface increased p.  相似文献   
85.
Optical (fluorescence) and acoustic in-situ techniques were tested in their ability to measure the spatial and temporal distribution of plankton in freshwater ecosystems with special emphasis on the harmful and buoyant cyanobacterium P. rubescens. Fluorescence was measured with the multi-spectral FluoroProbe (Moldaenke FluoroProbe, MFP) and a Seapoint Chlorophyll Fluorometer (SCF). In-situ measurements of the acoustic backscatter strength (ABS) were conducted with three different acoustic devices covering multiple acoustic frequencies (614 kHz ADCP, 2 MHz ADP, and 6 MHz ADV). The MFP provides a fast and reliable technique to measure fluorescence at different wavelengths in situ, which allows discriminating between P. rubescens and other phytoplankton species. All three acoustic devices are sensitive to P. rubescens even if other scatterers, e.g., zooplankton or suspended sediment, are present in the water column, because P. rubescens containing gas vesicles has a strong density difference and hence acoustic contrast to the ambient water and other scatterers. After calibration, the combination of optical and acoustical measurements not only allows qualitative and quantitative observation of P. rubescens, but also distinction between P. rubescens, other phytoplankton, and zooplankton. As the measuring devices can sample in situ at high rates they enable assessment of plankton distributions at high temporal (minutes) and spatial (decimeters) resolution or covering large temporal (seasonal) and spatial (basin scale) scales.  相似文献   
86.
87.
88.
89.
90.
In weed biological control programs, pre-release host-specificity testing relies traditionally on no-choice and choice feeding, oviposition, and development tests. Rarely have they included detailed examination of behavioral responses to olfactory and visual cues of biological control candidates, although a better understanding of the mechanisms underlying host recognition may explain potential discrepancies between choice and no-choice tests, and/or between tests conducted in the lab versus field conditions. We investigated how the seed-feeding weevil, Mogulones borraginis, distinguishes its host plant, Cynoglossum officinale, from three native confamilial non-target species in North America. In behavioral bioassays, M. borraginis responded to olfactory and visual cues individually and, to an even greater extent, to both plant cue modalities when offered simultaneously. In tests with the combined cues, M. borraginis was attracted to C. officinale but responded with indifference or was repelled by non-target plants. In electrophysiological experiments, we identified that M. borraginis responded to ten volatile compounds and four wavelengths of lights from inflorescences of C. officinale. We propose that studies of responses to multimodal plant cues can advance our understanding of how biocontrol candidate species discriminate among host plants and closely related non-target species, thereby increasing the accuracy of environmental safety assessments pre-release.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号