首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   205篇
  免费   11篇
  2023年   2篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2016年   2篇
  2015年   3篇
  2014年   5篇
  2013年   5篇
  2012年   17篇
  2011年   9篇
  2010年   5篇
  2009年   5篇
  2008年   5篇
  2007年   9篇
  2006年   6篇
  2005年   8篇
  2004年   6篇
  2003年   7篇
  2002年   6篇
  2001年   3篇
  2000年   4篇
  1999年   4篇
  1991年   3篇
  1990年   4篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1985年   6篇
  1984年   3篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1975年   2篇
  1974年   2篇
  1972年   3篇
  1971年   3篇
  1970年   4篇
  1969年   5篇
  1968年   3篇
  1966年   5篇
  1965年   3篇
  1963年   2篇
  1961年   2篇
  1958年   2篇
  1935年   4篇
  1911年   1篇
  1909年   2篇
  1908年   1篇
  1875年   1篇
排序方式: 共有216条查询结果,搜索用时 968 毫秒
101.
The phasmids are bilateral sensory organs located in the tail of Caenorhabditis elegans and other nematodes. The similar structures of the phasmids and the amphid chemosensory organs in the head have long suggested a chemosensory function for the phasmids. However, the PHA and PHB phasmid neurons are not required for chemotaxis or for dauer formation, and no direct proof of a chemosensory function of the phasmids has been obtained. C. elegans avoids toxic chemicals by reversing its movement, and this behavior is mediated by sensory neurons of the amphid, particularly, the ASH neurons. Here we show that the PHA and PHB phasmid neurons function as chemosensory cells that negatively modulate reversals to repellents. The antagonistic activity of head and tail sensory neurons is integrated to generate appropriate escape behaviors: detection of a repellent by head neurons mediates reversals, which are suppressed by antagonistic inputs from tail neurons. Our results suggest that C. elegans senses repellents by defining a head-to-tail spatial map of the chemical environment.  相似文献   
102.
103.
104.
105.
106.
This study demonstrates that the silver technique of Grimelius (Acta Soc. Med. Ups. 73:243–270, 68) is ideally suited for the study of cardiovascular chromaffin cells in lampreys. This method showed that in the Southern Hemisphere lamprey, Geotria australis, the distribution of chromaffin cells differs from that described for holarctic species. In G. australis, the chromaffin cells are found mainly in the sinus venosus, atrium, and nearby regions of the cardinal and jugular veins, and they are absent from the ventricle and conus arteriosus. The location and discreteness of the large accumulation of chromaffin cells in the lateral wall of the right posterior cardinal vein of adults resemble those of the precardiac axillary bodies of elasmobranchs. Chromaffin cells become more abundant during metamorphosis. The possible phylogenetic and functional significance of lamprey chromaffin cells is briefly discussed.  相似文献   
107.
108.
We have shown that the specific inhibition of hypoxia-induced relaxation by organ culture in porcine coronary arteries can be mimicked by treatment of control vessels with the protein synthesis inhibitor, cycloheximide. We hypothesize that organ culture of vascular smooth muscle results in the decreased expression of proteins that are critical for vascular oxygen sensing. Using two-dimensional gel electrophoresis and mass spectroscopy, we identified such candidate proteins. The expressions of the smooth muscle-specific protein, SM22, and tropomyosin are decreased after 24 h in organ culture. These results were confirmed by Western blot analysis. Other smooth muscle proteins (actin and calponin) exhibited little change. We also demonstrate a 50% downregulation in the small G protein, Rho, a potent modulator of Ca(2+)-independent force. These results indicate that organ culture preferentially inhibits the expression of certain smooth muscle proteins. This change in protein expression after organ culture correlates with the specific inhibition of hypoxic vasorelaxation. These results provide novel target pathways for investigation that are potentially important for vascular oxygen sensing.  相似文献   
109.
Herpes simplex virus type 1 (HSV-1) infected cell protein 0 (ICP0) is a 110-kDa nuclear phosphoprotein that is required for both the efficient initiation of lytic infection and the reactivation of quiescent viral genomes from latency. The ability of ICP0 to act as a potent viral transactivator is mediated by its N-terminal zinc-binding RING finger domain. This domain confers E3 ubiquitin ligase activity to ICP0 and is required for the proteasome-dependent degradation of a number of cellular proteins during infection, including the major nuclear domain 10 (ND10) constituent protein promyelocytic leukemia. In previous work we mapped three phosphorylation regions within ICP0, two of which directly affected its transactivation capabilities in transient transfection assays (Davido et al., J. Virol. 79:1232-1243, 2005). Because ICP0 is a phosphoprotein, we initially sought to test the hypothesis that phosphorylation regulates the E3 ubiquitin ligase activity of ICP0. Although none of the mutations affected ICP0 E3 ligase activity in vitro, transient transfection analysis indicated that mutations within one or more of the phosphorylated regions impaired the ability of ICP0 to form foci with colocalizing conjugated ubiquitin and to disrupt ND10. Mutations within one of the regions also affected ICP0 stability, and all of these phenomena occurred in a cell type-dependent manner. In the context of viral infection, only one ICP0 phosphorylation mutant (P1) showed a significant defect in viral replication and enhanced protein stability compared to all the other viruses tested. This study suggests that specific cellular environments and context of expression (transfection versus infection) differentially regulate several activities of ICP0 related to its E3 ubiquitin ligase activity via phosphorylation.  相似文献   
110.
We have investigated the role of Caenorhabditis elegans RAD-51 during meiotic prophase and embryogenesis, making use of the silencing effect of RNA interference (RNAi). rad-51 RNAi leads to severe defects in chromosome morphology in diakinesis oocytes. We have explored the effect of rad-51 RNAi in mutants lacking fundamental components of the recombination machinery. If double-strand breaks are prevented by spo-11 mutation, rad-51 RNAi does not affect chromosome appearance. This is consistent with a role for RAD-51 downstream of the initiation of recombination. In the absence of MRE-11, as in the absence of SPO-11, RAD-51 depletion has no effect on the chromosomes, which appear intact, thus indicating a role for MRE-11 in DSB induction. Intriguingly, rad-51 silencing in oocytes that lack MSH-5 leads to chromosome fragmentation, a novel trait that is distinct from that seen in msh-5 mutants and in rad-51 RNAi oocytes, suggesting new potential roles for the msh-5 gene. Silencing of the rad-51 gene also causes a reduction in fecundity, which is suppressed by mutation in the DNA damage checkpoint gene rad-5, but not in the cell death effector gene ced-3. Finally, RAD-51 depletion is also seen to affect the soma, resulting in hypersensitivity to ionizing radiation in late embryogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号