首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   502篇
  免费   49篇
  551篇
  2019年   6篇
  2016年   9篇
  2015年   11篇
  2014年   12篇
  2013年   14篇
  2012年   16篇
  2011年   15篇
  2010年   13篇
  2009年   11篇
  2008年   17篇
  2007年   16篇
  2006年   10篇
  2005年   21篇
  2004年   10篇
  2003年   19篇
  2002年   10篇
  2001年   23篇
  2000年   15篇
  1999年   14篇
  1998年   11篇
  1997年   7篇
  1996年   7篇
  1995年   6篇
  1993年   7篇
  1992年   10篇
  1991年   15篇
  1990年   13篇
  1989年   12篇
  1988年   5篇
  1987年   10篇
  1986年   13篇
  1985年   7篇
  1983年   9篇
  1982年   6篇
  1981年   5篇
  1977年   6篇
  1976年   3篇
  1975年   4篇
  1968年   3篇
  1960年   4篇
  1953年   3篇
  1938年   4篇
  1936年   9篇
  1935年   5篇
  1933年   8篇
  1932年   9篇
  1931年   9篇
  1929年   7篇
  1923年   3篇
  1918年   3篇
排序方式: 共有551条查询结果,搜索用时 15 毫秒
81.
The fungal pathogen Alternaria alternata f. sp. lycopersici produces AAL-toxins that function as chemical determinants of the Alternaria stem canker disease in the tomato (Lycopersicon esculentum). In resistant cultivars, the disease is controlled by the Asc locus on chromosome 3. Our aim was to characterize novel sources of resistance to the fungus and of insensitivity to the host-selective AAL-toxins. To that end, the degree of sensitivity of wild tomato species to AAL-toxins was analyzed. Of all members of the genus Lycopersicon, only L. cheesmanii was revealed to be sensitive to AAL-toxins and susceptible to fungal infection. Besides moderately insensitive responses from some species, L. pennellii and L. peruvianum were shown to be highly insensitive to AAL-toxins as well as resistant to the pathogen. Genetic analyses showed that high insensitivity to AAL-toxins from L. pennellii is inherited in tomato as a single complete dominant locus. This is in contrast to the incomplete dominance of insensitivity to AAL-toxins of L. esculentum. Subsequent classical genetics, RFLP mapping and allelic testing indicated that high insensitivity to AAL-toxins from L. pennellii is conferred by a new allele of the Asc locus.  相似文献   
82.
Ionic fluxes in Na channels of myelinated axons show ionic competition, block, and deviations from simple flux independence. These phenomena are particularly evident when external Na+ ions are replaced by other permeant or impermeant ions. The observed currents require new flux equations not based on the concepts of free diffusion. A specific permeability model for the Na channel is developed from Eyring rate theory applied to a chain of saturable binding sites. There are four energy barriers in the pore and only one ion is allowed inside at a time. Deviations from independence arise from saturation. The model shows that ionic permeability ratios measured from zero-current potentials can differ from those measured from relative current amplitudes or conductances. The model can be fitted to experiments with various external sodium substitutes by varying only two parameters: For each ion the height of the major energy barrier (the selectivity filter) determines the biionic zero-current potential and the depth of the energy well (binding site) just external to that barrier then determines the current amplitudes. Voltage clamp measurements with myelinated nerve fibers are given showing numerous examples of deviations from independence in ionic fluxes. Strong blocks of ionic currents by guanidinium compounds and Tl+ ions are fitted by binding within the channel with apparent dissociation constants in the range 50-122 mM. A small block with high Na+ concentrations can be fitted by Na+ ion binding with a dissociation constant of 368 mM. The barrier model is given a molecular interpretation that includes stepwise dehydration of the permeating ion as it interacts with an ionized carboxylic acid.  相似文献   
83.
Molybdenum and tungsten in biology   总被引:6,自引:0,他引:6  
Molybdenum is the only second-row transition metal that is required by most living organisms, and the few species that do not require molybdenum use tungsten, which lies immediately below molybdenum in the periodic table. Because of their unique chemical versatility and unusually high bioavailability these two transition metals have been incorporated into the active sites of enzymes over the course of evolution. Enzymes that contain molybdenum or tungsten continue to be discovered and several crystal structures have become available recently. This new structural information has been complemented by spectroscopic and kinetic methods, as well as computational approaches. Together, these studies provide an increasingly detailed view of the reaction mechanisms and the correlation between the electronic structure of the active site and catalytic function, one of the fundamental goals in metallobiochemistry.  相似文献   
84.
85.
86.
In humans, the L-cysteine desulfurase NFS1 plays a crucial role in the mitochondrial iron-sulfur cluster biosynthesis and in the thiomodification of mitochondrial and cytosolic tRNAs. We have previously demonstrated that purified NFS1 is able to transfer sulfur to the C-terminal domain of MOCS3, a cytosolic protein involved in molybdenum cofactor biosynthesis and tRNA thiolation. However, no direct evidence existed so far for the interaction of NFS1 and MOCS3 in the cytosol of human cells. Here, we present direct data to show the interaction of NFS1 and MOCS3 in the cytosol of human cells using Förster resonance energy transfer and a split-EGFP system. The colocalization of NFS1 and MOCS3 in the cytosol was confirmed by immunodetection of fractionated cells and localization studies using confocal fluorescence microscopy. Purified NFS1 was used to reconstitute the lacking molybdoenzyme activity of the Neurospora crassa nit-1 mutant, giving additional evidence that NFS1 is the sulfur donor for Moco biosynthesis in eukaryotes in general.  相似文献   
87.
88.
Elevation of intracellular Ca2+ concentration ([Ca2+]i) triggers exocytosis of secretory granules in pancreatic duct epithelia. In this study, we find that the signal also controls granule movement. Motions of fluorescently labeled granules stopped abruptly after a [Ca2+]i increase, kinetically coincident with formation of filamentous actin (F-actin) in the whole cytoplasm. At high resolution, the new F-actin meshwork was so dense that cellular structures of granule size appeared physically trapped in it. Depolymerization of F-actin with latrunculin B blocked both the F-actin formation and the arrest of granules. Interestingly, when monitored with total internal reflection fluorescence microscopy, the immobilized granules still moved slowly and concertedly toward the plasma membrane. This group translocation was abolished by blockers of myosin. Exocytosis measured by microamperometry suggested that formation of a dense F-actin meshwork inhibited exocytosis at small Ca2+ rises <1 μ m . Larger [Ca2+]i rises increased exocytosis because of the co-ordinate translocation of granules and fusion to the membrane. We propose that the Ca2+-dependent freezing of granules filters out weak inputs but allows exocytosis under stronger inputs by controlling granule movements.  相似文献   
89.
Differentiation of micronuclei (MN) caused by ionizing radiation from those caused by chemicals is a crucial step for managing treatment of individuals exposed to radiation. MN in binucleated lymphocytes in peripheral blood are widely used as biomarkers for estimating dose of radiation, but they are not specific for ionizing radiation. MN induced by ionizing radiation originate predominantly as a result of chromosome breaks (clastogenic action), whereas MN caused by chemical agents are derived from the loss of entire chromosomes (aneugenic action). C-banding highlights centromeres, which might make it possible to distinguish radiation induced MN, i.e., as a byproduct of acentric fragments, from those caused by the loss of entire chromosomes. To test the use of C-banding for identifying radiation induced MN, a blood sample from a healthy donor was irradiated with 3 Gy of Co-60 gamma rays and cultured. Cells were harvested and dropped onto slides, divided into a group stained directly with Giemsa and another processed for C banding, then stained with Giemsa. The frequency of MN in 500 binucleated cells was scored for each method. In preparations stained with Giemsa directly, the MN appeared as uniformly stained structures, whereas after C banding, some MN exhibited darker regions corresponding to centromeres that indicated that they were not derived from acentric fragments. The C-banding technique enables differentiation of MN from acentric chromosomal material. This distinction is useful for improving the specificity of the MN assay as a biomarker for ionizing radiation.  相似文献   
90.
We have previously reported a method for isolation of mutants with enhanced tolerance to the fungal AAL toxin and given a detailed characterization of atr1 (AAL toxin resistant, Gechev et al. in Biochem Biophys Res Commun 375:639–644, 2008). Herewith, we report eight more mutants with enhanced tolerance to the AAL toxin. Phenotypic analysis showed that six of the mutants were reduced in size compared with their original background loh2. Furthermore, atr2 showed delayed flowering and senescence. The mutants were also evaluated for oxidative stress tolerance by growing them on ROS-inducing media supplemented with either aminotriazole or paraquat, generating, respectively, H2O2 or superoxide radicals. Oxidative stress, confirmed by induction of the marker genes, HIGH AFFINITY NITRATE TRANSPORTER At1G08090 and HEAT SHOCK PROTEIN 17 At3G46230, inhibited growth of all lines. However, while the original background loh2 developed necrotic lesions and died rapidly on ROS-inducing plant growth media, atr1, atr2, atr7 and atr9 remained green and viable. The tolerance against oxidative stress-induced cell death was confirmed by fresh weight and chlorophyll measurements. Real-time PCR analysis revealed that the expression of the EXTENSIN gene At5G46890, previously shown to be downregulated by aminotriazole in atr1, was repressed in all lines, consistent with the growth inhibition induced by oxidative stress. Taken together, the data indicate a complex link between growth, development and oxidative stress tolerance and indicates that growth inhibition can be uncoupled from oxidative stress-induced cell death.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号