首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   502篇
  免费   49篇
  551篇
  2019年   6篇
  2016年   9篇
  2015年   11篇
  2014年   12篇
  2013年   14篇
  2012年   16篇
  2011年   15篇
  2010年   13篇
  2009年   11篇
  2008年   17篇
  2007年   16篇
  2006年   10篇
  2005年   21篇
  2004年   10篇
  2003年   19篇
  2002年   10篇
  2001年   23篇
  2000年   15篇
  1999年   14篇
  1998年   11篇
  1997年   7篇
  1996年   7篇
  1995年   6篇
  1993年   7篇
  1992年   10篇
  1991年   15篇
  1990年   13篇
  1989年   12篇
  1988年   5篇
  1987年   10篇
  1986年   13篇
  1985年   7篇
  1983年   9篇
  1982年   6篇
  1981年   5篇
  1977年   6篇
  1976年   3篇
  1975年   4篇
  1968年   3篇
  1960年   4篇
  1953年   3篇
  1938年   4篇
  1936年   9篇
  1935年   5篇
  1933年   8篇
  1932年   9篇
  1931年   9篇
  1929年   7篇
  1923年   3篇
  1918年   3篇
排序方式: 共有551条查询结果,搜索用时 0 毫秒
151.
152.
153.
Aldehyde oxidase, a molybdoflavoenzyme that plays an important role in aldehyde biotransformation, requires oxygen as substrate and produces reduced oxygen species. However, little information is available regarding its importance in cellular redox stress. Therefore, studies were undertaken to characterize its superoxide and hydrogen peroxide production. Aldehyde oxidase was purified to >98% purity and exhibited a single band at approximately 290 kDa on native polyacrylamide gradient gel electrophoresis. Superoxide generation was measured and quantitated by cytochrome c reduction and EPR spin trapping with p-dimethyl aminocinnamaldehyde as reducing substrate. Prominent superoxide generation was observed with an initial rate of 295 nmol min(-1) mg(-1). Electrochemical measurements of oxygen consumption and hydrogen peroxide formation yielded values of 650 and 355 nmol min(-1) mg(-1). In view of the ubiquitous distribution of aldehydes in tissues, aldehyde oxidase can be an important basal source of superoxide that would be enhanced in disease settings where cellular aldehyde levels are increased.  相似文献   
154.
155.
Activity of KCNQ (Kv7) channels requires binding of phosphatidylinositol 4,5-bisphosphate (PIP(2)) from the plasma membrane. We give evidence that Mg(2+) and polyamines weaken the KCNQ channel-phospholipid interaction. Lowering internal Mg(2+) augmented inward and outward KCNQ currents symmetrically, and raising Mg(2+) reduced currents symmetrically. Polyvalent organic cations added to the pipette solution had similar effects. Their potency sequence followed the number of positive charges: putrescine (+2) < spermidine (+3) < spermine (+4) < neomycin (+6) < polylysine (>+6). The inhibitory effects of Mg(2+) were reversible with sequential whole-cell patching. Internal tetraethylammonium ion (TEA) gave classical voltage-dependent block of the pore with changes of the time course of K(+) currents. The effect of polyvalent cations was simpler, symmetric, and without changes of current time course. Overexpression of phosphatidylinositol 4-phosphate 5-kinase Igamma to accelerate synthesis of PIP(2) attenuated the sensitivity to polyvalent cations. We suggest that Mg(2+) and other polycations reduce the currents by electrostatic binding to the negative charges of PIP(2), competitively reducing the amount of free PIP(2) available for interaction with channels. The dose-response curves could be modeled by a competition model that reduces the pool of free PIP(2). This mechanism is likely to modulate many other PIP(2)-dependent ion channels and cellular processes.  相似文献   
156.
It is generally accepted that mechanical stress of cardiomyocytes increases RNA and protein synthesis of myosin heavy chain (MHC) quantitatively but it is still a matter of debate whether MHC gene expression is also changed qualitatively. We investigated expression of MHC genes of spontaneously contracting neonatal cardiomyocytes experimentally arrested by permanent depolarization [potassium chloride (KCI)] as well as by electromechanical uncoupling [2,3 butanedione monoxime (BDM)]. Relative distribution of MHC mRNA isoforms (α and β) was studied by quantitative polymerase chain reaction. Expression of MHC isoenzymes was the same in contracting (34.5% β-MHC) and arrested (40.5% and 33.0% β-MHC in KCl and BDM, respectively) cardiomyocytes. However, treatment with phenylephrine for the same period increased significantly β-MHC expression to 55%. We conclude that hormonal factors rather than Ca2− or mechanical stress regulate qualitatively MHC gene expression. J. Cell. Biochem. 64:458–465. © 1997 Wiley-Liss, Inc.  相似文献   
157.
Local anesthetic solutions were applied suddenly to the outside of single myelinated nerve fibers to measure the time course of development of block of sodium channels. Sodium currents were measured under voltage clamp with test pulses applied several times per second during the solution change. The rate of block was studied by using drugs of different lipid solubility and of different charge type, and the external pH was varied from pH 8.3 to pH 6 to change the degree of ionization of the amine compounds. At pH 8.3 the half-time of action of amine anesthetics such as lidocaine, procaine, tetracaine, and others was always less than 2 s and usually less than 1 s. Lowering the pH to 6.0 decreased the apparent potency and slowed the rate of action of these drugs. The rate of action of neutral benzocaine was fast (1 s) and pH independent. The rate of action of cationic quaternary QX-572 was slow (greater than 200 s) and also pH independent. Other quaternary anesthetic derivatives showed no action when applied outside. The result is that neutral drug forms act much more rapidly than charged ones, suggesting that externally applied local anesthetics must cross a hydrophobic barrier to reach their receptor. A model representing diffusion of drug into the nerve fiber gives reasonable time courses of action and reasonable membrane permeability coefficients on the assumption that the hydrophobic barrier is the nodal membrane. Arguments are given that there may be a need for reinterpretation of many published experiments on the location of the anesthetic receptor and on which charge form of the drug is active to take into account the effects of unstirred layers, high membrane permeability, and high lipid solubility.  相似文献   
158.
The properties of Na channels of the node of Ranvier are altered by neutral, amine, and quaternary local anesthetic compounds. The kinetics of the Na currents are governed by a composite of voltage- and time-dependent gating processes with voltage- and time-dependent block of channels by drug. Conventional measurements of steady-state sodium inactivation by use of 50-ms prepulses show a large negative voltage shift of the inactivation curve with neutral benzocaine and with some ionizable amines like lidocaine and tetracaine, but no shift is seen with quaternary OX-572. However, when the experiment is done with repetitive application of a prepulse-testpulse waveform, a shift with the quaternary cations (applied internally) is seen as well. 1-min hyperpolarizations of lidocaine- or tetracaine-treated fibers restore two to four times as many channels to the conducting pool as 50-ms hyperpolarizations. Raising the external Ca++ concentration also has a strong unblocking effect. These manipulations do not relieve block in fibers treated with internal quaternary drugs. The results are interpreted in terms of a single receptor in Na channels for the different drug types. Lipid-soluble drug forms are thought to come and go from the receptor via a hydrophobic region of the membrane, while charged and less lipid-soluble forms pass via a hydrophilic region (the inner channel mouth). The hydrophilic pathway is open only when the gates of the channel are open. Any drug form in the channel increases the probability of closing the inactivation gate which, in effect, is equivalent to a negative shift of the voltage dependence of inactivation.  相似文献   
159.
By overcoming the diffraction limit in light microscopy, super-resolution techniques, such as stimulated emission depletion (STED) microscopy, are experiencing an increasing impact on life sciences. High costs and technically demanding setups, however, may still hinder a wider distribution of this innovation in biomedical research laboratories. As far-field microscopy is the most widely employed microscopy modality in the life sciences, upgrading already existing systems seems to be an attractive option for achieving diffraction-unlimited fluorescence microscopy in a cost-effective manner. Here, we demonstrate the successful upgrade of a commercial time-resolved confocal fluorescence microscope to an easy-to-align STED microscope in the single-beam path layout, previously proposed as “easy-STED”, achieving lateral resolution < λ/10 corresponding to a five-fold improvement over a confocal modality. For this purpose, both the excitation and depletion laser beams pass through a commercially available segmented phase plate that creates the STED-doughnut light distribution in the focal plane, while leaving the excitation beam unaltered when implemented into the joint beam path. Diffraction-unlimited imaging of 20 nm-sized fluorescent beads as reference were achieved with the wavelength combination of 635 nm excitation and 766 nm depletion. To evaluate the STED performance in biological systems, we compared the popular phalloidin-coupled fluorescent dyes Atto647N and Abberior STAR635 by labeling F-actin filaments in vitro as well as through immunofluorescence recordings of microtubules in a complex epithelial tissue. Here, we applied a recently proposed deconvolution approach and showed that images obtained from time-gated pulsed STED microscopy may benefit concerning the signal-to-background ratio, from the joint deconvolution of sub-images with different spatial information which were extracted from offline time gating.  相似文献   
160.
Summary A protoplast mutagenesis and cell selection system was used for the isolation of streptomycin resistant Lycopersicon peruvianum colonies. Protoplasts were treated with the mutagen N-nitroso-methylurea and could be regenerated into fertile plants, carrying the streptomycin resistant character. Several classes of streptomycin resistance could be distinguished. Reciprocal crosses between streptomycin resistant and sensitive plants showed a non-Mendelian transmission of the resistance trait. Streptomycin resistance is the first selectable and maternally inherited cell organelle marker described in tomato.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号