首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6245篇
  免费   697篇
  国内免费   3篇
  6945篇
  2021年   73篇
  2019年   61篇
  2018年   52篇
  2017年   77篇
  2016年   116篇
  2015年   178篇
  2014年   202篇
  2013年   237篇
  2012年   313篇
  2011年   284篇
  2010年   182篇
  2009年   174篇
  2008年   250篇
  2007年   235篇
  2006年   219篇
  2005年   228篇
  2004年   193篇
  2003年   199篇
  2002年   219篇
  2001年   216篇
  2000年   184篇
  1999年   186篇
  1998年   100篇
  1997年   78篇
  1996年   63篇
  1995年   72篇
  1994年   55篇
  1993年   66篇
  1992年   136篇
  1991年   114篇
  1990年   101篇
  1989年   116篇
  1988年   105篇
  1987年   94篇
  1986年   103篇
  1985年   91篇
  1984年   63篇
  1983年   75篇
  1982年   66篇
  1981年   52篇
  1980年   64篇
  1979年   62篇
  1975年   64篇
  1974年   67篇
  1973年   64篇
  1972年   72篇
  1970年   63篇
  1969年   57篇
  1968年   55篇
  1967年   58篇
排序方式: 共有6945条查询结果,搜索用时 9 毫秒
151.
High-throughput analyses that are central to microbial systems biology and ecophysiology research benefit from highly homogeneous and physiologically well-defined cell cultures. While attention has focused on the technical variation associated with high-throughput technologies, biological variation introduced as a function of cell cultivation methods has been largely overlooked. This study evaluated the impact of cultivation methods, controlled batch or continuous culture in bioreactors versus shake flasks, on the reproducibility of global proteome measurements in Shewanella oneidensis MR-1. Variability in dissolved oxygen concentration and consumption rate, metabolite profiles, and proteome was greater in shake flask than controlled batch or chemostat cultures. Proteins indicative of suboxic and anaerobic growth (e.g., fumarate reductase and decaheme c-type cytochromes) were more abundant in cells from shake flasks compared to bioreactor cultures, a finding consistent with data demonstrating that “aerobic” flask cultures were O2 deficient due to poor mass transfer kinetics. The work described herein establishes the necessity of controlled cultivation for ensuring highly reproducible and homogenous microbial cultures. By decreasing cell to cell variability, higher quality samples will allow for the interpretive accuracy necessary for drawing conclusions relevant to microbial systems biology research.  相似文献   
152.
Hard rock quarries are commonly located close to national parks and special areas of conservation and are generally regarded as visually intrusive. Consequently, restoration strategies that effectively accelerate natural plant regeneration processes are required. Slate waste tips present extreme conditions for plant establishment with multiple potential limiting factors (e.g., lack of organic matter, nutrients, and poor water retention). In this study, we investigated ecological strategies to accelerate natural regeneration at the largest slate quarry in Europe. A field experiment was conducted to assess ecosystem restoration using a contrasting set of native woody species. Treatments included amendments of waste tips with: polyacrylamide gel to increase water‐holding capacity; mineral fertilizer to increase nutrient supply; and two treatments that increased both (organic waste or boulder clay addition). Ecosystem recovery was evaluated through above‐ and below‐ground productivity (plant and microbial, respectively) and soil analyses. Neither increasing nutrient supply (with mineral fertilizer) nor water‐holding capacity (with polyacrylamide gel) was sufficient, alone, to improve plant establishment. However, both boulder clay and organic waste amendment significantly enhanced plant growth. There was a marked positive interaction in the effects on tree growth of the amendment with organic waste and boulder clay. Large interactions occurred between tree species and substrate amendments. The growth of N2‐fixing species was strongly favored over non‐fixers where there was no addition of material increasing soil nitrogen supply, whereas the growth advantage of pioneer species over non‐pioneers was greatest with fertilizer, organic waste, or clay additions. Organic waste addition had the greatest positive impact on soil processes.  相似文献   
153.
154.
N R Mattatall  L M Cameron  B C Hill 《Biochemistry》2001,40(44):13331-13341
Cytochrome aa3-600 or menaquinol oxidase, from Bacillus subtilis, is a member of the heme-copper oxidase family. Cytochrome aa3-600 contains cytochrome a, cytochrome a3, and CuB, and each is coordinated via histidine residues to subunit I. Subunit II of cytochrome aa3-600 lacks CuA, which is a common feature of the cytochrome c oxidase family members. Anaerobic reduction of cytochrome aa3-600 by the substrate analogue 2,3-dimethyl-1,4-naphthoquinone (DMN) resolves two distinct kinetic phases by stopped-flow, single-wavelength spectrometry. Global analysis of time-resolved, multiwavelength spectra shows that during these distinct phases cytochromes a and a3 are both reduced. Cyanide binding to cytochrome a3 enhances the fast phase rate, which in the presence of cyanide can be assigned to cytochrome a reduction, whereas cytochrome a3-cyanide reduction is slow. The steady-state activity of cytochrome aa3-600 exhibits saturation kinetics as a function of DMN concentration with a Km of 300 microM and a maximal turnover of 63.5 s(-1). Global kinetic analysis of steady-state spectra reveals a species that is characteristic of a partially reduced oxygen adduct of cytochrome a3-CuB, whereas cytochrome a remains oxidized. Electron paramagnetic resonance (EPR) spectroscopy of the oxidase in the steady state shows the expected signal from ferricytochrome a, and a new EPR signal at g = 2.01. A model of the catalytic cycle for cytochrome aa3-600 proposes initial electron delivery from DMN to cytochrome a, followed by rapid heme to heme electron transfer, and suggests possible origins of the radical signal in the steady-state form of the enzyme.  相似文献   
155.
What's hot in animal biosafety?   总被引:1,自引:0,他引:1  
In recent years, the emergence or re-emergence of critical issues in infectious disease and public health has presented new challenges and opportunities for laboratory animal care professionals. The re-emergence of bioterrorism as a threat activity of individuals or small groups has caused a heightened awareness of biosecurity and improved biosafety. The need for animal work involving high-risk or high-consequence pathogens and for arthropod-borne diseases has stimulated renewed interest in animal biosafety matters, particularly for work in containment. Application of these principles to animals retained in outdoor environments has been a consequence of disease eradication programs. The anticipated global eradication of wild poliovirus has prompted the promulgation of new biosafety guidelines for future laboratory and animal work. Increased concern regarding the use of biologically derived toxins and hazardous chemicals has stimulated a new categorization of facility containment based on risk assessment. Recognition that prion disease agents and other high-consequence pathogens require safe handling and thorough destruction during terminal decontamination treatment has led to the development of new biosafety guidelines and technologies. The implementation of these guidelines and technologies will promote state-of-the-art research while minimizing risk to laboratory animals, researchers, and the environment.  相似文献   
156.
CYP101 (cytochrome P450cam) catalyses the oxidation of camphor but has also been shown to catalyse the reductive dehalogenation of hexachloroethane and pentachloroethane. This reaction has potential applications in the biodegradation of these environmental contaminants. The hexachloroethane dehalogenation activity of CYP101 has been investigated by mutagenesis. The effects of active-site polarity and volume were probed by combinations of active-site mutations. Increasing the active-site hydrophobicity by the Y96A and Y96F mutations strengthened hexachloroethane binding but decreased the rate of reaction. Increasing the polarity with the F87Y mutation drastically weakened hexachloroethane binding but did not affect the rate of reaction. The Y96H mutation had little effect at pH 7.4, but weakened hexachloroethane binding while increasing the rate of dehalogenation by up to 40% at pH 6.5, suggesting that the imidazole side-chain was partially protonated at pH 6.5 but not at pH 7.4. Substitutions by bulkier side-chains at F87, T101 and V247 weakened hexachloroethane binding but increased the dehalogenation rate. The effect of the individual mutations was additive in multiple mutants, and the most active mutant for hexachloroethane reductive dehalogenation at pH 7.4 was F87W-V247L (80 min-1 or 2.5 x the activity of the wild-type). The results suggested that the CYP101 active site shows good match with hexachloroethane, the Y96 side-chain plays an important role in both hexachloroethane binding and dehalogenation, and hexachloroethane binding and dehalogenation places conflicting demands on active-site polarity and compromises were necessary to achieve reasonable values for both.  相似文献   
157.
158.
l-Asparaginase is now known to be a potent antineoplastic agent in animals and has given complete remission in some human leukemias. Extensive clinical trials of this enzyme, however, were not possible in the past because of inadequate production of this substance. We have developed practical procedures for producing l-asparaginase in yields of sufficient quantity and purity for more extensive clinical evaluation. The nutritional requirements for optimal production of biologically active l-asparaginase by a strain of Escherichia coli have been ascertained. The highest yields of enzyme were obtained when cells were grown aerobically in a corn steep medium. Good enzyme production was associated with media containing l-glutamic acid, l-methionine, and lactic acid. The addition of glucose to the medium, however, resulted in depressed production of l-asparaginase. Sodium ion appeared to suppress l-asparaginase production. With the procedure described for isolation of biologically active l-asparaginase from E. coli, stable l-asparaginase preparations with a specific activity of 620 IU per mg of protein (1,240-fold purification with 40% total recovery) were obtained.  相似文献   
159.
Angiogenesis is a hallmark of tumor development and metastasis and now a validated target for cancer treatment. We previously reported that a novel dimer peptide (apoEdp) derived from the receptor binding region of human apolipoprotein E (apoE) inhibits virus-induced angiogenesis. However, its role in tumor anti-angiogenesis is unknown. This study demonstrates that apoEdp has anti-angiogenic property in vivo through reduction of tumor growth in a mouse model and ocular angiogenesis in a rabbit eye model. Our in vitro studies show that apoEdp inhibits human umbilical vein endothelial cell proliferation, migration, invasion and capillary tube formation. We document that apoEdp inhibits vascular endothelial growth factor-induced Flk-1 activation as well as downstream signaling pathways that involve c-Src, Akt, eNOS, FAK, and ERK1/2. These in vitro data suggest potential sites of the apoE dipeptide inhibition that could occur in vivo.This is the first evidence that a synthetic dimer peptide mimicking human apoE has anti-angiogenesis functions and could be an anti-tumor drug candidate.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号