首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   271篇
  免费   14篇
  2022年   3篇
  2018年   3篇
  2016年   4篇
  2015年   8篇
  2013年   7篇
  2012年   12篇
  2011年   10篇
  2010年   8篇
  2009年   8篇
  2008年   8篇
  2007年   19篇
  2006年   20篇
  2005年   16篇
  2004年   11篇
  2003年   9篇
  2002年   10篇
  2001年   3篇
  2000年   3篇
  1998年   2篇
  1997年   3篇
  1996年   5篇
  1994年   3篇
  1993年   5篇
  1992年   4篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   4篇
  1986年   5篇
  1985年   2篇
  1984年   5篇
  1983年   7篇
  1982年   8篇
  1981年   2篇
  1980年   5篇
  1979年   2篇
  1978年   2篇
  1975年   2篇
  1973年   2篇
  1969年   3篇
  1967年   2篇
  1959年   4篇
  1954年   2篇
  1953年   2篇
  1952年   2篇
  1951年   2篇
  1949年   3篇
  1939年   2篇
  1937年   2篇
  1936年   3篇
排序方式: 共有285条查询结果,搜索用时 15 毫秒
151.
152.
Comparative analyses of the N-glycosylation pattern of hemolymph glycoproteins from Biomphalaria glabrata strains Puerto Rico (BgPR) and Salvador (BgBS-90), differing in their susceptibility towards Schistosoma mansoni infection, were performed by Western blotting, enzyme-linked immunosorbent assays, two-dimensional high-performance liquid chromatography and mass spectrometry. Obtained data demonstrated an enhanced expression of serologically cross-reacting, fucosylated carbohydrate epitopes by the highly susceptible BgPR-strain in comparison to the resistant BgBS-90-strain. In particular, glycoproteins of BgPR snails exhibited larger amounts of glycans with (β1-2)-linked xylose or terminal Fuc(α1-3)GalNAc(β1-4)[±Fuc(α1-3)]GlcNAc(β1-)-units which are known to mediate cross-reactivity with schistosomal glycoconjugates. This finding could be corroborated by immunohistochemical studies showing again an enhanced expression of such carbohydrate epitopes in BgPR tissue. Hence, our results provide evidence for a correlation of B. glabrata susceptibility towards S. mansoni infection and the expression of carbohydrate determinants shared by the parasite and its intermediate host.  相似文献   
153.
Gap junctions consist of clusters of intercellular channels, which enable direct cell-to-cell communication and adhesion in animals. Whereas deuterostomes, including all vertebrates, use members of the connexin and pannexin multiprotein families to assemble gap junction channels, protostomes such as Drosophila and Caenorhabditis elegans use members of the innexin protein family. The molecular composition of innexin-containing gap junctions and the functional significance of innexin oligomerization for development are largely unknown. Here, we report that heteromerization of Drosophila innexins 2 and 3 is crucial for epithelial organization and polarity of the embryonic epidermis. Both innexins colocalize in epithelial cell membranes. Innexin3 is mislocalized to the cytoplasm in innexin2 mutants and is recruited into ectopic expression domains defined by innexin2 misexpression. Conversely, RNA interference (RNAi) knockdown of innexin3 causes mislocalization of innexin2 and of DE-cadherin, causing cell polarity defects in the epidermis. Biochemical interaction studies, surface plasmon resonance analysis, transgenesis, and biochemical fractionation experiments demonstrate that both innexins interact via their C-terminal cytoplasmic domains during the assembly of heteromeric channels. Our data provide the first molecular and functional demonstration that innexin heteromerization occurs in vivo and reveal insight into a molecular mechanism by which innexins may oligomerize into heteromeric gap junction channels.  相似文献   
154.
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous contaminants of great environmental concern due to their toxic, mutagenic and carcinogenic properties. This study correlates soil characteristics (i.e. soil organic matter, particle- and pore-size distribution) with extractability and toxicity data (LUMIStox, Ostracod) to investigate factors that govern biodegradability of PAHs in three historically contaminated soils. Desorption of PAHs occurred most readily from soil TA1 (82%), followed by soil AS3.7 (69%) and soil WG2 (20%). This is in line with toxicity data, as the soil in which the greatest contaminant desorption (SFE) was observed exhibited the highest toxicity (TA1). Of the three soils, pronounced biodegradation of 2-4-ring, and slight biodegradation of 5-ring PAHs was observed only in AS3.7, while no decrease of PAHs was reported for soils WG2 and TA1 during the degradation experiment. Strong sorption reduced pollutant bioavailability in WG2 and hence hampered biodegradation. By contrast, pollutant sorption was weak in TA1 and microbial activity was most likely inhibited due to high toxicity in this soil. Based on our results we conclude that biodegradation of PAHs in soils is determined by a number of phenomena with complex interactions between them. Consideration of a single factor will be misleading and may result in false prediction of the biodegradation potential.  相似文献   
155.
The post-translational modification of the neural cell adhesion molecule (NCAM) by polysialic acid (polySia) represents a remarkable example of dynamic modulation of homo- and heterophilic cell interactions by glycosylation. The synthesis of this unique carbohydrate polymer depends on the polysialyltransferases ST8SiaII and ST8SiaIV. Aiming to understand in more detail the contributions of ST8SiaII and ST8SiaIV to polySia biosynthesis in vivo, we used mutant mouse lines that differ in the number of functional polysialyltransferase alleles. The 1,2-diamino-4,5-methylenedioxybenzene method was used to qualitatively and quantitatively assess the polySia patterns. Similar to the wild-type genotype, long polySia chains (>50 residues) were detected in all genotypes expressing at least one functional polysialyltransferase allele. However, variant allelic combinations resulted in distinct alterations in the total amount of poly-Sia; the relative abundance of long, medium, and short polymers; and the ratio of polysialylated to non-polysialylated NCAM. In ST8SiaII-null mice, 45% of the brain NCAM was non-polysialylated, whereas a single functional allele of ST8SiaII was sufficient to polysialylate approximately 90% of the NCAM pool. Our data reveal a complex polysialylation pattern and show that, under in vivo conditions, the coordinated action of ST8SiaII and ST8SiaIV is crucial to fine-tune the amount and structure of polySia on NCAM.  相似文献   
156.
Plasma high density lipoprotein (HDL) is inversely associated with the development of atherosclerosis. HDL exerts its atheroprotective role through involvement in reverse cholesterol transport in which HDL is loaded with cholesterol at the periphery and transports its lipid load back to the liver for disposal. In this pathway, HDL is not completely dismantled but only transfers its lipids to the cell. Here we present evidence that a Chinese hamster ovarian cell line (CHO7) adapted to grow in lipoprotein-deficient media degrades HDL and concomitantly internalizes HDL-derived cholesterol. Delivery of HDL cholesterol to the cell was demonstrated by a down-regulation of cholesterol biosynthesis, an increase in total cellular cholesterol content and by stimulation of cholesterol esterification after HDL treatment. This HDL degradation pathway is distinct from the low density lipoprotein (LDL) receptor pathway but also degrades LDL. 25-Hydroxycholesterol, a potent inhibitor of the LDL receptor pathway, down-regulated LDL degradation in CHO7 cells only in part and did not down-regulate HDL degradation. Dextran sulfate released HDL bound to the cell surface of CHO7 cells, and heparin treatment released protein(s) contributing to HDL degradation. The involvement of heparan sulfate proteoglycans and lipases in this HDL degradation was further tested by two inhibitors genistein and tetrahydrolipstatin. Both blocked HDL degradation significantly. Thus, we demonstrate that CHO7 cells degrade HDL and LDL to supply themselves with cholesterol via a novel degradation pathway. Interestingly, HDL degradation with similar properties was also observed in a human placental cell line.  相似文献   
157.
The oncostatin M receptor (OSMR) is part of receptor complexes for oncostatin M and interleukin-31. Signaling events are triggered by Jaks (Janus kinases) that constitutively bind to membrane-proximal receptor regions. Besides their established role in signaling, Jaks are involved in the regulation of the surface expression of several cytokine receptors. Here, we analyzed the structural requirements within the human OSMR that underlie its limited surface expression in the absence of associated Jaks. We identified three dileucine-like motifs within the Jak-binding region of the OSMR that control receptor surface and overall expression. A receptor mutant in which all three motifs were mutated to alanine displayed markedly increased surface expression. Although the surface half-life of this mutant was increased compared with that of the wild-type receptor, no difference in the internalization rate was detectable, implying that these receptors differ in their post-endocytic fate. The protein stability of the wild-type receptor was markedly lower than that of mutant receptors, but could be strongly increased in the presence of the lysosomal inhibitor chloroquine. Our data are consistent with the dileucine motifs being involved in destabilization of receptors devoid of associated Jaks as part of a quality control ensuring signaling competence of OSMRs.  相似文献   
158.
Recent developments in adeno-associated virus vector technology   总被引:1,自引:0,他引:1  
Adeno-associated virus (AAV), a single-stranded DNA parvovirus, is emerging as one of the leading gene therapy vectors owing to its nonpathogenicity and low immunogenicity, stability and the potential to integrate site-specifically without known side-effects. A portfolio of recombinant AAV vector types has been developed with the aim of optimizing efficiency, specificity and thereby also the safety of in vitro and in vivo gene transfer. More and more information is now becoming available about the mechanism of AAV/host cell interaction improving the efficacy of recombinant AAV vector (rAAV) mediated gene delivery. This review summarizes the current knowledge of the infectious biology of AAV, provides an overview of the latest developments in the field of AAV vector technology and discusses remaining challenges.  相似文献   
159.
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号