首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   12篇
  137篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2017年   1篇
  2016年   8篇
  2015年   15篇
  2014年   18篇
  2013年   10篇
  2012年   15篇
  2011年   7篇
  2010年   6篇
  2009年   6篇
  2008年   11篇
  2007年   6篇
  2006年   3篇
  2005年   8篇
  2004年   2篇
  2003年   5篇
  2002年   4篇
  1999年   1篇
排序方式: 共有137条查询结果,搜索用时 15 毫秒
101.
The even spreading of mesoderm cells in the Drosophila embryo is essential for its proper patterning by ectodermally derived signals. In how germline clone embryos, defects in mesoderm spreading lead to a partial loss of dorsal mesoderm derivatives. HOW is an RNA-binding protein that is thought to regulate diverse mRNA targets. To identify direct HOW targets, we implemented a series of selection methods on mRNAs whose levels were elevated in how germline clone embryos during the stage of mesoderm spreading. Four mRNAs were found to be specifically elevated in the mesoderm of how germline clone embryos, and to exhibit specific binding to HOW via their 3' UTRs. Importantly, overexpression of three of these genes phenocopied the mesoderm-spreading phenotype of how germline clone embryos. Further analysis showed that overexpressing one of these genes, miple (a Drosophila midkine and pleiotrophin heparin-binding growth factor), in the mesoderm led to abnormal scattered MAPK activation, a phenotype that might explain the abnormal mesoderm spreading. In addition, the number of EVE-positive cells, which are responsive to receptor tyrosine kinase (RTK) signaling, was increased following Miple overexpression in the mesoderm and appeared to be dependent on Heartless function. In summary, our analysis suggests that HOW downregulates the levels of a number of mRNA species in the mesoderm in order to enable proper mesoderm spreading during early embryogenesis.  相似文献   
102.
cyt-PTP epsilon is a naturally occurring nonreceptor form of the receptor-type protein tyrosine phosphatase (PTP) epsilon. As such, cyt-PTP epsilon enables analysis of phosphatase regulation in the absence of extracellular domains, which participate in dimerization and inactivation of the receptor-type phosphatases receptor-type protein tyrosine phosphatase alpha (RPTPalpha) and CD45. Using immunoprecipitation and gel filtration, we show that cyt-PTP epsilon forms dimers and higher-order associations in vivo, the first such demonstration among nonreceptor phosphatases. Although cyt-PTP epsilon readily dimerizes in the absence of exogenous stabilization, dimerization is increased by oxidative stress. Epidermal growth factor receptor stimulation can affect cyt-PTP epsilon dimerization and tyrosine phosphorylation in either direction, suggesting that cell surface receptors can relay extracellular signals to cyt-PTP epsilon, which lacks extracellular domains of its own. The inactive, membrane-distal (D2) phosphatase domain of cyt-PTP epsilon is a major contributor to intermolecular binding and strongly interacts in a homotypic manner; the presence of D2 and the interactions that it mediates inhibit cyt-PTP epsilon activity. Intermolecular binding is inhibited by the extreme C and N termini of D2. cyt-PTP epsilon lacking these regions constitutively dimerizes, and its activities in vitro towards para-nitrophenylphosphate and in vivo towards the Kv2.1 potassium channel are markedly reduced. We conclude that physiological signals can regulate dimerization and phosphorylation of cyt-PTP epsilon in the absence of direct interaction between the PTP and extracellular molecules. Furthermore, dimerization can be mediated by the D2 domain and does not strictly require the presence of PTP extracellular domains.  相似文献   
103.
104.
105.
Low pacing variabilty in the heart has been clinically reported as a risk factor for lethal cardiac arrhythmias and arrhythmic death. In a previous simulation study, we demonstrated that stochastic pacing sustains an antiarrhythmic effect by moderating the slope of the action potential duration (APD) restitution curve, by reducing the propensity of APD alternans, converting discordant to concordant alternans, and ultimately preventing wavebreaks. However, the dynamic mechanisms relating pacing stochasticity to tissue stability are not yet known. In this work, we develop a mathematical framework to describe the APD signal using an autoregressive stochastic model, and we establish the interrelations between stochastic pacing, cardiac memory, and cardiac stability, as manifested by the degree of APD alternans. Employing stability analysis tools, we show that increased stochasticity in the ventricular tissue activation sequence works to lower the maximal absolute eigenvalues of the stochastic model, thereby contributing to increased stability. We also show that the memory coefficients of the autoregressive model are modulated by pacing stochasticity in a nonlinear, biphasic way, so that for exceedingly high levels of pacing stochasticity, the antiarrhythmic effect is hampered by increasing APD variance. This work may contribute to establishment of an optimal antiarrhythmic pacing protocol in a future study.  相似文献   
106.
There is a revolution in the ability to analyze gene expression of single cells in a tissue. To understand this data we must comprehend how cells are distributed in a high-dimensional gene expression space. One open question is whether cell types form discrete clusters or whether gene expression forms a continuum of states. If such a continuum exists, what is its geometry? Recent theory on evolutionary trade-offs suggests that cells that need to perform multiple tasks are arranged in a polygon or polyhedron (line, triangle, tetrahedron and so on, generally called polytopes) in gene expression space, whose vertices are the expression profiles optimal for each task. Here, we analyze single-cell data from human and mouse tissues profiled using a variety of single-cell technologies. We fit the data to shapes with different numbers of vertices, compute their statistical significance, and infer their tasks. We find cases in which single cells fill out a continuum of expression states within a polyhedron. This occurs in intestinal progenitor cells, which fill out a tetrahedron in gene expression space. The four vertices of this tetrahedron are each enriched with genes for a specific task related to stemness and early differentiation. A polyhedral continuum of states is also found in spleen dendritic cells, known to perform multiple immune tasks: cells fill out a tetrahedron whose vertices correspond to key tasks related to maturation, pathogen sensing and communication with lymphocytes. A mixture of continuum-like distributions and discrete clusters is found in other cell types, including bone marrow and differentiated intestinal crypt cells. This approach can be used to understand the geometry and biological tasks of a wide range of single-cell datasets. The present results suggest that the concept of cell type may be expanded. In addition to discreet clusters in gene-expression space, we suggest a new possibility: a continuum of states within a polyhedron, in which the vertices represent specialists at key tasks.  相似文献   
107.
Proliferation of aortic smooth muscle cells contributes to atherogenesis and neointima formation. Sublytic activation of complement, particularly C5b-9, induces cell cycle progression in aortic smooth muscle cells. RGC-32 is a novel protein that may promote cell cycle progression in response to complement activation. We cloned human RGC-32 cDNA from a human fetal brain cDNA library. The human RGC-32 cDNA encodes a 117-amino acid protein with 92% similarity to the rat and mouse protein. Human RGC-32 maps to chromosome 13 and is expressed in most tissues. Sublytic complement activation enhanced RGC-32 mRNA expression in human aortic smooth muscle cells and induced nuclear translocation of the protein. RGC-32 was physically associated with cyclin-dependent kinase p34CDC2 and increased the kinase activity in vivo and in vitro. In addition, RGC-32 was phosphorylated by p34CDC2-cyclin B1 in vitro. Mutation of RGC-32 protein at Thr-91 prevented the p34CDC2-mediated phosphorylation and resulted in loss of p34CDC2 kinase enhancing activity. Overexpression of RGC-32 induced quiescent aortic smooth muscle cells to enter S-phase. These data indicate that cell cycle activation by C5b-9 may involve p34CDC2 activity through RGC-32. RGC-32 appears to be a cell cycle regulatory factor that mediates cell proliferation, both as an activator and substrate of p34CDC2.  相似文献   
108.
Few previous studies on the factors that affect Striped Hyaena (Hyaena hyaena Linnaeus, 1758) occurrence and densities were done on geographically unrelated populations using different methodologies. In Israel, hyaenas occur throughout the country's steep climatic and geographical gradients, presenting a unique opportunity to study densities and habitat use across adjacent ecosystems using a unified methodology and test previous conceptions regarding the species’ habitat selection. We collected hyaena abundance-absence data using 1440 camera traps placed at 80 sites (2012– 2016). Site location ranged from hyper-arid deserts to dense Mediterranean shrubland. We assessed the effect of climate, habitat structure, elevation, geomorphological attributes (proxy for den availability), and anthropogenic development (proximity to settlements and agriculture) on hyaena densities using N-mixture models. Hyaena densities were negatively affected by anthropogenic development, and were limited by den availability. Hyaena densities did not follow a climatic or geographic gradient. Densities were highest at hyper-arid deserts and Mediterranean coastal shrublands. Despite the former conception that hyaenas prefer semi-arid open habitats and avoid extreme deserts and dense vegetation, we show that hyaenas use and even thrive in these habitats when geomorphological conditions are suitable and resources are available.  相似文献   
109.
Anthocyanins are water-soluble colored pigments found in terrestrial plants and are responsible for the red, blue, and purple coloration of many flowers and fruits. In addition to the plethora of health benefits associated with anthocyanins (cardioprotective, anti-inflammatory, antioxidant, and antiaging properties), these compounds have attracted widespread attention due to their promising potential as natural food colorants. Previously, we reported the biotransformation of anthocyanin, specifically cyanidin 3-O-glucoside (C3G), from the substrate (+)-catechin in Escherichia coli. In the present work, we set out to systematically improve C3G titers by enhancing substrate and precursor availability, balancing gene expression level, and optimizing cultivation and induction parameters. We first identified E. coli transporter proteins that are responsible for the uptake of catechin and secretion of C3G. We then improved the expression of the heterologous pathway enzymes anthocyanidin synthase (ANS) and 3-O-glycosyltransferase (3GT) using a bicistronic expression cassette. Next, we augmented the intracellular availability of the critical precursor UDP-glucose, which has been known as the rate-limiting precursor to produce glucoside compounds. Further optimization of culture and induction conditions led to a final titer of 350 mg/liter of C3G. We also developed a convenient colorimetric assay for easy screening of C3G overproducers. The work reported here constitutes a promising foundation to develop a cost-effective process for large-scale production of plant-derived anthocyanin from recombinant microorganisms.  相似文献   
110.
Evaluation of the activity of antioxidants is commonly based on measurements of the effect of a specific antioxidant on redox reactions conducted in a solution. Given the difference between reactions that occur in homogeneous solutions and those that occur at lipid–water interfaces, as in biological membranes and lipoproteins, the relevance of the commonly-used assays (such as TEAC and ORAC) to the antioxidative activity in biological systems is questionable. The aim of the present investigation is to develop a more relevant assay. Based on our results, we propose an assay based on prolongation of the lag preceding fast peroxidation of serum lipids. The assay employs our previously developed procedure for determination of susceptibility of serum lipids to peroxidation. The effect of antioxidants is expressed in terms of the relative prolongation of the lag preceding peroxidation. It can be considered reliable because it is only marginally dependent on the specific sera used for the assay. The resultant ranking of antioxidants may be expressed either as the relative prolongation of the lag per 1 μM of antioxidant or as the concentration of antioxidant required to double the lag. As expected, the observed ranking order is very different from that reported for TEAC or ORAC assays, undermining the relevance of these assays for oxidation that occurs at interfaces.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号