首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   143篇
  免费   1篇
  国内免费   1篇
  2022年   2篇
  2021年   4篇
  2020年   1篇
  2019年   5篇
  2018年   2篇
  2017年   3篇
  2016年   8篇
  2015年   2篇
  2014年   4篇
  2013年   6篇
  2012年   8篇
  2011年   7篇
  2010年   2篇
  2009年   4篇
  2008年   11篇
  2007年   11篇
  2006年   6篇
  2005年   9篇
  2004年   5篇
  2003年   7篇
  2002年   5篇
  2001年   4篇
  2000年   3篇
  1999年   5篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
排序方式: 共有145条查询结果,搜索用时 31 毫秒
91.
As polyphenolic compounds isolated from plants extracts, flavonoids have been applied to various pharmaceutical uses in recent decades due to their anti-inflammatory, cancer preventive, and cardiovascular protective activities. In this study, we evaluated the effects of the flavonoid quercetin on Crotalus durissus terrificus secretory phospholipase A2 (sPLA2), an important protein involved in the release of arachidonic acid from phospholipid membranes. The protein was chemically modified by treatment with quercetin, which resulted in modifications in the secondary structure as evidenced through circular dichroism. In addition, quercetin was able to inhibit the enzymatic activity and some pharmacological activities of sPLA2, including its antibacterial activity, its ability to induce platelet aggregation, and its myotoxicity by approximately 40%, but was not able to reduce the inflammatory and neurotoxic activities of sPLA2. These results suggest the existence of two pharmacological sites in the protein, one that is correlated with the enzymatic site and another that is distinct from it. We also performed molecular docking to better understand the possible interactions between quercetin and sPLA2. Our docking data showed the existence of hydrogen-bonded, polar interactions and hydrophobic interactions, suggesting that other flavonoids with similar structures could bind to sPLA2. Further research is warranted to investigate the potential use of flavonoids as sPLA2 inhibitors.  相似文献   
92.
Branched-chain amino acids (BCAAs) and IGF-I, the secretion of which is stimulated by growth hormone (GH), prevent muscle atrophy. mTOR plays a pivotal role in the protective actions of BCAA and IGF-1. The pathway by which BCAA activates mTOR is different from that of IGF-1, which suggests that BCAA and GH work independently. We tried to examine whether BCAA exerts a protective effect against dexamethasone (Dex)-induced muscle atrophy independently of GH using GH-deficient spontaneous dwarf rats (SDRs). Unexpectedly, Dex did not induce muscle atrophy assessed by the measurement of cross-sectional area (CSA) of the muscle fibers and did not increase atrogin-1, MuRF1 and REDD1 expressions, which are activated during protein degradation. Glucocorticoid (GR) mRNA levels were higher in SDRs compared to GH-treated SDRs, indicating that the low expression of GR is not the reason of the defect of Dex’s action in SDRs. BCAA did not stimulate the phosphorylation of p70S6K or 4E-BP1, which stimulate protein synthesis. BCAA did not decrease the mRNA level of atrogin-1 or MuRF1. These findings suggested that Dex failed to modulate muscle mass and that BCAA was unable to activate mTOR in SDRs because these phosphorylations of p70S6K and 4E-BP1 and the reductions of these mRNAs are regulated by mTOR. In contrast, after GH supplementation, these responses to Dex were normalized and muscle fiber CSA was decreased by Dex. BCAA prevented the Dex-induced decrease in CSA. BCAA increased the phosphorylation of p70S6K and decreased the Dex-induced elevations of atrogin-1 and Bnip3 mRNAs. However, the amount of mTORC1 components including mTOR was not decreased in the SDRs compared to the normal rats. These findings suggest that GH increases mTORC1 activity but not its content to recover the action of BCAA in SDRs and that GH is required for actions of Dex and BCAA in muscles.  相似文献   
93.
94.
95.
The changes in length on the two opposite sides of etiolated radish (Raphanus sativus) hypocotyls prior to, and following gravitropic stimulation, were measured using an infrared-imaging system. It was observed that the growth suppression on the upper side began first at least 10 min after the onset of gravitropic stimulation, and after 30 min the acceleration in growth on the lower side started. The gravitropic curvature was steadily induced from 10 min. When radish hypocotyls were switched from a vertical to horizontal position for different durations and then replaced to the vertical position, the growth suppression on the gravity-stimulated (upper) side was observed in all cases, but the acceleration in growth on the opposite (lower) side appeared only in continuously gravity-stimulated seedlings, although it occurred later than the growth suppression on the upper side. These results suggest that the suppression in growth on the upper side of the hypocotyls is a direct effect of gravitropic stimulation, but not the acceleration on the lower side. When 4-methylthio-3-butenyl isothiocyanate (4-MTBI), which has an inhibitory activity against radish hypocotyl growth, was applied on the one side of radish hypocotyls and then the 4-MTBI-applied side or opposite side was placed in a horizontal position, the former showed greater bending than the control, suggesting that the growth suppression on the upper side is enhanced and maintained with MTBI application there. In the latter case, the seedlings showed less bending than the control, suggesting a decrease in growth on the lower side with MTBI application. All the results suggest that gravitropism of radish hypocotyls may be caused by an increase in growth-inhibiting substance(s) induced with gravitropic stimulation in the upper side, inducing growth inhibition there.  相似文献   
96.
The effect of -adrenergic stimulation on cardiac Na+/Ca2+ exchange has been controversial. To clarify the effect, we measured Na+/Ca2+ exchange current (INCX) in voltage-clamped guinea pig, mouse, and rat ventricular cells. When INCX was defined as a 5 mM Ni2+-sensitive current in guinea pig ventricular myocytes, 1 µM isoproterenol apparently augmented INCX by 32%. However, this increase was probably due to contamination of the cAMP-dependent Cl current (CFTR-Cl current, ICFTR-Cl), because Ni2+ inhibited the activation of ICFTR-Cl by 1 µM isoproterenol with a half-maximum concentration of 0.5 mM under conditions where INCX was suppressed. Five or ten millimolar Ni2+ did not inhibit ICFTR-Cl activated by 10 µM forskolin, an activator of adenylate cyclase, suggesting that Ni2+ acted upstream of adenylate cyclase in the -adrenergic signaling pathway. Furthermore, in a low-extracellular Cl bath solution, 1 µM isoproterenol did not significantly alter the amplitude of Ni2+-sensitive INCX at +50 mV, which is close to the reversal potential of ICFTR-Cl. No change in INCX amplitude was induced by 10 µM forskolin. When INCX was activated by extracellular Ca2+, it was not significantly affected by 1 µM isoproterenol in guinea pig, mouse, or rat ventricular cells. We concluded that -adrenergic stimulation does not have significant effects on INCX in guinea pig, mouse, or rat ventricular myocytes. cystic fibrosis transmembrane conductance regulator; nickel ion  相似文献   
97.
Recently, it was reported that the product of Birt-Hogg-Dubé syndrome gene (folliculin, FLCN) is directly phosphorylated by 5′-AMP-activated protein kinase (AMPK). In this study, we identified serine 62 (Ser62) as a phosphorylation site in FLCN and generated an anti-phospho-Ser62-FLCN antibody. Our analysis suggests that Ser62 phosphorylation is indirectly up-regulated by AMPK and that another residue is directly phosphorylated by AMPK. By binding with FLCN-interacting proteins (FNIP1 and FNIP2/FNIPL), Ser62 phosphorylation is increased. A phospho-mimic mutation at Ser62 enhanced the formation of the FLCN-AMPK complex. These results suggest that function(s) of FLCN-AMPK-FNIP complex is regulated by Ser62 phosphorylation.

Structured summary

MINT-7298145, MINT-7298166: Flcn (uniprotkb:Q76JQ2) physically interacts (MI:0915) with AMPK alpha 1 (uniprotkb:P54645) by anti tag coimmunoprecipitation (MI:0007)MINT-7298267: AMPK alpha 1 (uniprotkb:Q13131) phosphorylates (MI:0217) tsc2 (uniprotkb:P49816) by protein kinase assay (MI:0424)MINT-7298182: FNIP1 (uniprotkb:Q8TF40) physically interacts (MI:0915) with Flcn (uniprotkb:Q76JQ2) by anti tag coimmunoprecipitation (MI:0007)MINT-7298132: AMPK alpha 1 (uniprotkb:Q13131) phosphorylates (MI:0217) Flcn (uniprotkb:Q76JQ2) by protein kinase assay (MI:0424)MINT-7298229: FNIPL (uniprotkb:Q9P278) physically interacts (MI:0915) with Flcn (uniprotkb:Q76JQ2) by anti tag coimmunoprecipitation (MI:0007)  相似文献   
98.
Intrauterine growth restriction is associated with chronically elevated levels of serum fatty acids and reduced glucose-stimulated insulin secretion. Lipid metabolism in pancreatic beta cells is critical for the regulation of insulin secretion, and the chronic exposure to fatty acids results in higher palmitate oxidation rates and an altered insulin response to glucose. Using a rat model of isocaloric protein restriction, we examined whether pre- and postnatal protein malnutrition influences the properties of pancreatic islet carnitine palmitoyltransferase-1 (liver isoform, L-CPT-1), a rate-limiting enzyme that regulates fatty acid oxidation in mitochondria. The activity of L-CPT-1 in pancreatic islets increased in the low protein (LP), although the L-CPT-1 mRNA levels were unaffected by malnutrition. The susceptibility of enzyme to inhibition by malonyl-CoA was unaltered and the content of malonyl-CoA was reduced in LP cells. Because the mitochondrial oxidation of fatty acids is related to the altered expression of a number of genes encoding proteins involved in insulin secretion, the levels of expression of insulin and GLUT-2 mRNA were assessed. A reduced expression of both genes was observed in malnourished rats. These results provide further evidence that increased L-CPT-1 activity and changes in gene expression in pancreatic islets may be involved in the reduced insulin secretion seen in malnourished rats.  相似文献   
99.
3-Nitropropionic acid (3NP) functions as an irreversible inhibitor of succinic acid dehydrogenase (complex II) and induces neuronal disorders in rats similar to those in patients with Huntington's disease. It is well known that L-carnitine (LC), a carrier of long chain fatty acid into the mitochondrial matrix, attenuates the neuronal degeneration in 3NP-treated rats. From these findings it has been suggested that 3NP induces certain neuronal cell death through mitochondrial dysfunction and that LC preserves the neurons against the dysfunction of mitochondria caused by 3NP. However, the detailed mechanism of cell death by 3NP and the protective actions of LC against the mitochondrial dysfunction have not been fully elucidated yet. Thus, we studied the molecular mechanism of the effects of 3NP and LC on isolated rat liver mitochondria. 3NP inhibited succinate respiration and the decreased respiratory control ratio of isolated mitochondria without affecting oxidative phosphorylation. 3NP induced a membrane permeability transition (MPT), which plays an important role in the mechanism of apoptotic cell death. 3NP stimulated Ca2+ release from mitochondria, decreased membrane potential, induced mitochondrial swelling, and stimulated cytochrome c release from mitochondria. 3NP-induced swelling was suppressed by bovine serum albumin, inhibitors of phospholipase A(2) and by an inhibitor of classic MPT, cyclosporin A. Furthermore, LC suppressed the changes brought about by 3NP in mitochondrial functions in the presence of ATP. These results suggest that MPT underlies the mechanism of 3NP-induced cell death, and that LC attenuates mitochondrial MPT by decreasing long chain fatty acids generated by phospholipase A(2).  相似文献   
100.
The peptide ligase subtiligase, derived from subtilisin, has been employed in the identification of protein N-termini in complex mixtures. Here, the peptide ester substrates for the ligation reaction were optimized with respect to solubility, resulting in greater incorporation of the N-terminal tags. Additionally, the quantitation of the incorporated tags was explored, and a 'click' chemistry-based derivatization provided the ability to quantitate the tag to low nanomolar concentrations by sandwich ELISA. These new tags should expand the utility of subtiligase for the proteomic study of N-termini.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号