首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1574篇
  免费   277篇
  国内免费   1篇
  2021年   14篇
  2017年   22篇
  2016年   22篇
  2015年   43篇
  2014年   52篇
  2013年   85篇
  2012年   70篇
  2011年   68篇
  2010年   59篇
  2009年   41篇
  2008年   66篇
  2007年   66篇
  2006年   56篇
  2005年   55篇
  2004年   56篇
  2003年   60篇
  2002年   55篇
  2001年   55篇
  2000年   37篇
  1999年   38篇
  1998年   15篇
  1997年   22篇
  1996年   20篇
  1995年   19篇
  1994年   27篇
  1993年   22篇
  1992年   49篇
  1991年   38篇
  1990年   47篇
  1989年   51篇
  1988年   39篇
  1987年   32篇
  1986年   31篇
  1985年   33篇
  1984年   26篇
  1983年   21篇
  1982年   14篇
  1981年   24篇
  1980年   21篇
  1979年   18篇
  1978年   23篇
  1977年   15篇
  1976年   15篇
  1975年   11篇
  1974年   25篇
  1972年   20篇
  1971年   10篇
  1970年   12篇
  1969年   10篇
  1967年   11篇
排序方式: 共有1852条查询结果,搜索用时 78 毫秒
51.
Cell volume is frequently down-regulated by the activation of anion channels. The role of cell swelling-activated chloride channels in cell volume regulation has been studied using the patch-clamp technique and a non-invasive microspectrofluorimetric assay for changes in cell volume. The rate of activation of these chloride channels was shown to limit the rate of regulatory volume decrease (RVD) in response to hyposmotic solutions. Expression of the human MDR1 or mouse mdr1a genes, but not the mouse mdr1b gene, encoding the multidrug resistance P-glycoprotein (P-gp), increased the rate of channel activation and the rate of RVD. In addition, P-gp decreased the magnitude of hyposmotic shock required to activate the channels and to elicit RVD. Tamoxifen selectively inhibited both chloride channel activity and RVD. No effect on potassium channel activity was elicited by expression of P-gp. The data show that, in these cell types, swelling-activated chloride channels have a central role in RVD. Moreover, they clarify the role of P-gp in channel activation and provide direct evidence that P-gp, through its effect on chloride channel activation, enhances the ability of cells to down-regulate their volume.  相似文献   
52.
WhileEscherichia coli is common as a commensal organism in the distal ileum and colon, the presence of colonization factors (CF) on pathogenic strains ofE. coli facilitates attachment of the organism to intestinal receptor molecules in a species- and tissue-specific fashion. After the initial adherence, colonization occurs, and the involvement of additional virulence determinants leads to illness. EnterotoxigenicE. coli (ETEC) is the most extensively studied of the five categories ofE. coli that cause diarrheal disease, and has the greatest impact on health worldwide. ETEC can be isolated from domestic animals and humans. The biochemistry, genetics, epidemiology, antigenic characteristics, and cell and receptor binding properties of ETEC have been extensively described. Another major category, enteropathogenicE. coli (EPEC), has virulence mechanisms, primarily effacement and cytoskeletal rearrangement of intestinal brush borders, that are distinct from ETEC. An EPEC CF receptor has been purified and characterized as a sialidated transmembrane glycoprotein complex directly attached to actin, thereby associating CF-binding with host-cell response. Three, additional categories ofE. coli diarrheal disease, their colonization factors and their host cell receptors are discussed. It appears that biofilms exist in the intestine in a manner similar to oral bacterial biofilms, and thatE. coli is part of these biofilms as both commensals and pathogens.Abbreviations CF colonization factor - CFA Colonization Factor Antigen - CS coli-surface-associated antigen - EAggEC enteroaggregativeE. coli - ECDD E. coli diarrheal disease - EHEC enterohemorrhagicE. coli - EIEC enteroinvasiveE. coli - EPEC enteropathogenicE. coli - ETEC enterotoxigenicE. coli - Gal galactose - GalNAc N-acetyl galactosamine - LT heat-labile toxin - NeuAc N-acetyl neuraminic acid - PCF Putative colonization factor - RBC red blood cells - SLT Shiga-like toxin - ST heat-stable toxin  相似文献   
53.
Elicitor preparations containing the avr5 gene products from race 4 of Cladosporium fulvum and tomato (Lycopersicon esculentum L.) cells near isogenic for the resistance gene Cf5 were used to investigate events following the treatment of host plasma membranes with elicitor. A 4-fold increase in H+-ATPase activity, coincident with the acidification of the extracellular medium, was detected immediately after elicitor treatment. The elicitor-induced stimulation of the plasma membrane H+-ATPase was inhibited by okadaic acid but not by staurosporine, suggesting that protein dephosphorylation was required for increased H+-ATPase activity. This observation was confirmed by [gamma]-32P labeling and immunodetection of the plasma membrane H+-ATPase. Effects of guanidine nucleotide analogs and mastoparan on the ATPase activity suggested the role of GTP-binding proteins in mediating the putative elicitor-receptor binding, resulting in activation of a phosphatase(s), which in turn stimulates the plasma membrane H+-ATPase by dephosphorylation.  相似文献   
54.
55.
56.
When chloramphenicol was added to a culture of Bacillus subtilis in early exponential growth, microscopic observation of cells stained by 4',6-diamidino-2-phenylindole showed nucleoids that had changed in appearance from irregular spheres and dumbbells to large, brightly stained spheres and ovals. In contrast, the addition of chloramphenicol to cultures in mid- and late exponential growth showed cells with elongated nucleoids whose frequency and length increased as the culture approached stationary phase. The kinetics of nucleoid elongation after the addition of chloramphenicol to exponential-phase cultures was complex. Immediately after treatment, the rate of nucleoid elongation was very rapid. The nucleoid then elongated steadily for about 4 min, after which the rate of elongation decreased considerably. Nucleoids of cells treated with 6-(p-hydroxyphenylazo)-uracil (an inhibitor of DNA synthesis) exhibited the immediate rapid elongation upon chloramphenicol treatment but not the subsequent changes. These observations suggest that axial filament formation during stationary phase (stage I of sporulation) in the absence of chloramphenicol results from changes in nucleoid structure that are initiated earlier, during exponential growth.  相似文献   
57.
Expression of SPARC (secreted protein acidic and rich in cysteine), a 43-kDa extracellular matrix-associated glycoprotein involved in tissue remodeling, was quantitated during normal human keratinocyte (NHK) growth in culture and as a function of sodium n-butyrate (NaB)-induced differentiation to mature enucleate cornified envelopes (CEs). Low levels of SPARC expression were observed in the basal-like cells of control NHKs, with isolated cells showing intense SPARC expression on the ventral surface. After addition of NaB, SPARC expression increased and the pattern of expression shifted to one involving predominantly suprabasal cells (i.e., spinous cells, pre-CEs, and mature CEs). Dense deposits of SPARC often surrounded the mature CEs. Flow cytometric analysis indicated that approximately 13% of NHKs expressed SPARC within 24 h of seeding into culture. This fraction of SPARC+ cells increased with time and peaked immediately postconfluence (31.3 ± 6.3% SPARC+). Cellular SPARC expression then decreased to baseline levels during entrance into plateau phase growth. SPARC was detectable in all phases of the cell cycle. SPARC levels were more intense and heterogeneous within the G2/M and G1 phases while S phase cells exhibited relatively homogeneous, low intensity, SPARC expression. During NaB-induced NHK differentiation, SPARC intracellular content increased prior to the onset of CE formation (i.e., 2 days after its addition) followed by a period of extracellular accumulation which coincided with the time of maximal CE generation (i.e., Days 4 and 5 after NaB addition). Correlation of cell size with anti-SPARC immunoreactivity revealed a predominance of SPARC expression in cells with a suprabasal phenotype. NHKs cultured on fibronectin (FN), an established modulator of epidermal cell maturation in vitro, showed a similar response to NaB. In general, however, the level of NaB-induced SPARC expression was considerably reduced in FN cultures correlating with a lower efficiency of CE formation. Induced SPARC expression was, in large part, dependent on autocrine transforming growth factor-β (TGF-β) production since incubation in the presence of NaB + neutralizing antibodies to TGF-β inhibited both the expression of SPARC by 72% and development of mature CEs.  相似文献   
58.
TonB is a proline-rich protein which provides a functional link between the inner and outer membranes of Gram-negative bacteria. TonB is anchored to the inner membrane via an N-terminal signal-like sequence and spans the periplasm, interacting with transport receptors in the outer membrane. We have investigated the role of the N-terminal signal-like peptide in TonB function. Replacement of the N-terminal sequence with heterologous sequences indicates that it has at least three distinct rotes in TonB function: (i) to facilitate translocation of TonB across the cytoplasmic membrane; (ii) to anchor TonB to the cytoplasmic membrane; (iii) a sequence-specific functional interaction with the ExbBD proteins.  相似文献   
59.
ExbB acts as a chaperone-like protein to stabilize TonB in the cytoplasm   总被引:19,自引:5,他引:14  
The TonB protein is required to transduce energy from the cytoplasmic membrane to outer membrane transport proteins of Gram-negative bacteria. Two accessory proteins, ExbB and ExbD, are required for TonB function and it has been suggested that TonB and ExbBD form a complex in the membrane. In this paper we demonstrate that there are two spatially distinct, functional interactions between ExbBD and TonB. First, there is an interaction between ExbBD and the N-terminal signal-like peptide of TonB, probabiy the formation of a stable complex in the membrane. Second, ExbB interacts with TonB in the cytoplasm. This interaction involves the domain of TonB that is normally periplasmic. Thus, this is a transient interaction which occurs during the synthesis and/or localization of TonB, implying a chaperone-like role for ExbB. The transmembrane topology of ExbB was shown to be consistent with this role.  相似文献   
60.
Growth factors with established biological activity toward cultured normal human epidermal keratinocytes (NHEKs) (e.g., transforming growth factor-beta, TGF-beta; retinoic acid, RA) initiate programmed changes in cellular maturation which differ with regard to the specific differentiation pathway (normal or abnormal) analyzed. Sodium butyrate (NaB) initiates one form of epidermal differentiation leading to enhanced cornified envelope (CE) formation which involves abrogation of the normally inhibitory effect of RA on NHEK maturation. NaB also induces TGF-beta mRNA in the maturing suprabasal compartment, suggesting that TGF-beta may play a role in NaB-initiated NHEK differentiation. Treatment with TGF-beta 1 alone, however, only marginally increased (by twofold) the number of detergent-resistant CEs compared to control NHEKs and did not alter the prevalence of fully mature enucleated CEs. TGF-beta 1 was quite effective in inducing significant levels of CE expression when used simultaneously with suboptimal concentrations of NaB. The cooperative action of suboptimal NaB and TGF-beta 1 generated numbers of CEs which, in fact, exceeded the incidence of mature CEs formed in response to optimal levels of NaB alone. Neutralizing antibodies to TGF-beta, moreover, effectively reduced the incidence of CE formation in cultures treated with optimal NaB concentrations, further implicating endogenous TGF-beta activity in the NaB-initiated NHEK differentiation model. It is suggested, therefore, that within the NaB-induced pathway of NHEK differentiation, TGF-beta can positively modulate expression of the differentiated phenotype but alone is insufficient for generation of mature CEs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号