首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1035篇
  免费   72篇
  国内免费   2篇
  1109篇
  2023年   17篇
  2022年   29篇
  2021年   34篇
  2020年   14篇
  2019年   22篇
  2018年   26篇
  2017年   22篇
  2016年   32篇
  2015年   63篇
  2014年   55篇
  2013年   84篇
  2012年   76篇
  2011年   100篇
  2010年   30篇
  2009年   46篇
  2008年   53篇
  2007年   41篇
  2006年   46篇
  2005年   27篇
  2004年   45篇
  2003年   23篇
  2002年   27篇
  2001年   23篇
  2000年   30篇
  1999年   23篇
  1998年   11篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1994年   3篇
  1993年   7篇
  1992年   10篇
  1991年   11篇
  1990年   12篇
  1989年   9篇
  1988年   10篇
  1987年   9篇
  1986年   1篇
  1985年   5篇
  1984年   8篇
  1983年   7篇
  1982年   4篇
  1981年   4篇
  1979年   1篇
  1976年   2篇
  1974年   1篇
排序方式: 共有1109条查询结果,搜索用时 31 毫秒
21.
The emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has resulted in a pandemic causing significant damage to public health and the economy. Efforts to understand the mechanisms of Coronavirus Disease 2019 (COVID-19) have been hampered by the lack of robust mouse models. To overcome this barrier, we used a reverse genetic system to generate a mouse-adapted strain of SARS-CoV-2. Incorporating key mutations found in SARS-CoV-2 variants, this model recapitulates critical elements of human infection including viral replication in the lung, immune cell infiltration, and significant in vivo disease. Importantly, mouse adaptation of SARS-CoV-2 does not impair replication in human airway cells and maintains antigenicity similar to human SARS-CoV-2 strains. Coupled with the incorporation of mutations found in variants of concern, CMA3p20 offers several advantages over other mouse-adapted SARS-CoV-2 strains. Using this model, we demonstrate that SARS-CoV-2–infected mice are protected from lethal challenge with the original Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), suggesting immunity from heterologous Coronavirus (CoV) strains. Together, the results highlight the use of this mouse model for further study of SARS-CoV-2 infection and disease.

Studying cross-protection from different coronaviruses is important to inform the research for a universal vaccine. This study uses a mouse-adapted SARS-CoV-2 strain to show that it confers protection from SARS-CoV challenge, suggesting possible immunity from heterologous challenge following natural infection.  相似文献   
22.
23.
Cell-mediated lymphocytotoxicity was generated in four strain combinations differing only by the cell-surface expression of the class II E molecule controlled by the H-2 complex. The four combinations were: B10.D2(R107) anti-B10.A(3R), B10.A(4R) anti-B10.A(2R), B10.GD anti-B10.D2(R101), and B10.S(7R) anti-B10.S(9R). In all four of these combinations, the stimulator expresses E molecules on the cell surface, while the responder does not. The cytolytic T lymphocytes generated in the B10.D2(R107) anti-B10.A(3R) and B10.A(4R) anti-B10.A(2R) combinations reacted not only with the stimulator but also with strains that do not express cell-surface E molecules, in particular, strains carrying the H-2 f and H-2 q haplotypes. The cross-reactivity with E-negative strains could be blocked by monoclonal antibodies specific for the Af or Aq molecules but not by antibodies recognizing determinants on E or class I (K) molecules. The anti-H-2f cross-reactivity could be inhibited by H-2 q cold targets and, reciprocally, the anti-H-2q reactivity could be blocked by H-2 f cold targets. These findings are interpreted as indicating that the cytolytic T lymphocytes stimulated by E molecules can recognize and lyse cells lacking E molecules but expressing A molecules. The observed E-A cross-reactivity supports the notion of structural and functional relatedness between the A and E molecules and suggests a common evolutionary origin of the A- and E-encoding loci.  相似文献   
24.
25.
Unique innate immunity-linked γδT cells have been seen in early human artery lesions, but their role in lesion development has received little attention. Here we investigated whether γδT cells modulate atherogenesis in apolipoprotein E-deficient (ApoE KO) mice. We found that γδT cell numbers were markedly increased in the proximal aorta of ApoE-deficient vs. wild-type mice during early atherogenesis, particularly in the aortic root and arch, where they comprised most of the T cells and lesion progression is most rapid. γδT cells infiltrated intimal lesions in ApoE KO mice, but only the adventitia in wild-type mice, and were more prevalent than CD4+ T cells in early nascent lesions, as evaluated by en face confocal microscopy. These aortic γδT cells produced IL-17, but not IFN-γ, analyzed by ex vivo FACS. Furthermore, aortic arch lipid accumulation correlated strongly with abundance of IL-17-expressing splenic γδT cells in individual ApoE KO mice. To investigate the role of these γδT cells in early atherogenesis, we analyzed ApoE/γδT double knockout (DKO) compared to ApoE KO mice. We observed reduced early intimal lipid accumulation at sites of nascent lesion formation, both in chow-fed (by 40%) and Western diet-fed (by 44%) ApoE/γδT DKO mice. In addition, circulating neutrophils were drastically reduced in these DKO mice on Western diet, while expansion of inflammatory monocytes and splenic Th1 or Th17 lymphocytes was not affected. These data reveal, for the first time, a pathogenic role of γδT cells in early atherogenesis in ApoE KO mice, by mechanisms likely to involve their IL-17 production and induction of neutrophilia. Targeting γδT cells thus might offer therapeutic benefit in atherosclerosis or other inflammatory vascular diseases.  相似文献   
26.
We studied the effects of H2O/D2O substitution on the permeation and gating of the large conductance Ca2+-activated K+ channels inChara gymnophylla droplet membrane using the patchclamp technique. The selectivity sequence of the channel was: K+>Rb+≫Li+, Na+, Cs+ and Cl. The conductance of this channel in symmetric 100mm KCl was found to be 130 pS. The single channel conductance was decreased by 15% in D2O as compared to H2O. The blockade of channel conductance by cytosolic Ca2+ weakened in D2O as a result of a decrease in zero voltage Ca2+ binding affinity by a factor of 1.4. Voltage-dependent channel gating was affected by D2O primarily due to the change in Ca2+ binding to the channel during the activation step. The Hill coefficient for Ca2+ binding was 3 in D2O and around 1 in H2O. The values of the Ca2+ binding constant in the open channel conformation were 0.6 and 6 μm in H2O and D2O, respectively, while the binding in the closed conformation was much less affected by D2O. The H2O/D2O substitution did not produce a significant change in the slope of channel voltage dependence but caused a shift as large as 60 mV with 1mm internal Ca2+.  相似文献   
27.
There is increasing evidence that epithelial-vascular interactions are essential for tissue patterning. Here we identified components of the molecular cross talk between respiratory epithelial cells and pulmonary capillaries necessary for the formation of the gas exchange surface of the lung. Selective inactivation of the Vegf-A gene in respiratory epithelium results in an almost complete absence of pulmonary capillaries, demonstrating the dependence of pulmonary capillary development on epithelium-derived Vegf-A. Deficient capillary formation in Vegf-A deficient lungs is associated with a defect in primary septae formation, a morphogenetic process critical for distal lung morphogenesis, coupled with suppression of epithelial cell proliferation and decreased hepatocyte growth factor (Hgf) expression. Lung endothelial cells express Hgf, and selective deletion of the Hgf receptor gene in respiratory epithelium phenocopies the malformation of septae, confirming the requirement for epithelial Hgf signaling in normal septae formation and suggesting that Hgf serves as an endothelium-derived factor that signals to the epithelium. Our findings support a mechanism for primary septae formation dependent on reciprocal interactions between respiratory epithelium and the underlying vasculature, establishing the dependence of pulmonary capillary development on epithelium-derived Vegf-A, and identify Hgf as a putative endothelium-derived factor that mediates the reciprocal signaling from the vasculature to the respiratory epithelium.  相似文献   
28.
Dimethylamine [DMA, (CH(3))(2)NH)] is abundantly present in human urine. Main sources of urinary DMA have been reported to include trimethylamine N-oxide, a common food component, and asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide (NO) synthesis. ADMA is excreted in the urine in part unmetabolized and in part after hydrolysis to DMA by dimethylarginine dimethylaminohydrolase (DDAH). Here we describe a GC-MS method for the accurate and rapid quantification of DMA in human urine. The method involves use of (CD(3))(2)NH as internal standard, simultaneous derivatization with pentafluorobenzoyl chloride and extraction in toluene, and selected-ion monitoring of m/z 239 for DMA and m/z 245 for (CD(3))(2)NH in the electron ionization mode. GC-MS analysis of urine samples from 10 healthy volunteers revealed a DMA concentration of 264+/-173 microM equivalent to 10.1+/-1.64 micromol/mmol creatinine. GC-tandem MS analysis of the same urine samples revealed an ADMA concentration of 27.3+/-15.3 microM corresponding to 1.35+/-1.2 micromol/mmol creatinine. In these volunteers, a positive correlation (R=0.83919, P=0.0024) was found between urinary DMA and ADMA, with the DMA/ADMA molar ratio being 10.8+/-6.2. Elevated excretion rates of DMA (52.9+/-18.5 micromol/mmol creatinine) and ADMA (3.85+/-1.65 micromol/mmol creatinine) were found by the method in 49 patients suffering from coronary artery disease, with the DMA/ADMA molar ratio also being elevated (16.8+/-12.8). In 12 patients suffering from end-stage liver disease, excretion rates of DMA (47.8+/-19.7 micromol/mmol creatinine) and ADMA (5.6+/-1.5 micromol/mmol creatinine) were found to be elevated, with the DMA/ADMA molar ratio (9.17+/-4.2) being insignificantly lower (P=0.46). Between urinary DMA and ADMA there was a positive correlation (R=0.6655, P<0.0001) in coronary artery disease, but no correlation (R=0.27339) was found in end-stage liver disease.  相似文献   
29.
Vibrio cholerae non‐O1, non‐O139 (VC_NAG) organisms are universally present in the aquatic environment and regarded as non‐pathogenic bacteria. However, considering that they do occasionally induce gastroenteritis, a study of their virulence and antibiotic resistance genes is important. The presence of enteropathogenic genes, including ctxA, VC_NAG‐specific heat‐stable toxin gene (st), hemolysin (hly), and zona occludens toxin (zot) was determined by PCR in 100 VC_NAG strains isolated in southern Vietnam in 2010–2013 from 94 environmental and six human origins. These 100 VC_NAG strains were also tested phenotypically and genotypically for the presence of the New Delhi metallo‐β‐lactamase (NDM‐1). Of the 100 VC_NAG strains tested, six were positive for ctxA; five from the environment and one of human origin. The st gene was detected in 17 isolates, 15 and two of which were of environmental and human origins, respectively. Gene hly was detected in 19 VC_NAG strains examined, two of which were isolated from humans and 17 from environments. The zot gene was not detected in any of the strains tested. Three VC_NAG strains of environmental origin were confirmed to produce NDM‐1 and the blaNDM‐1 gene was detected in those strains by PCR. Of note, one of the three NDM‐1‐producing VC_NAG strains was confirmed to carry ctxA, st and hly genes concurrently. This is the first report of isolation of NDM‐1‐producing VC_NAG strains in Vietnam.  相似文献   
30.
While numerous studies have implicated copy number variants (CNVs) in a range of neurological phenotypes, the impact relative to disease severity has been difficult to ascertain due to small sample sizes, lack of phenotypic details, and heterogeneity in platforms used for discovery. Using a customized microarray enriched for genomic hotspots, we assayed for large CNVs among 1,227 individuals with various neurological deficits including dyslexia (376), sporadic autism (350), and intellectual disability (ID) (501), as well as 337 controls. We show that the frequency of large CNVs (>1 Mbp) is significantly greater for ID-associated phenotypes compared to autism (p = 9.58 × 10(-11), odds ratio = 4.59), dyslexia (p = 3.81 × 10(-18), odds ratio = 14.45), or controls (p = 2.75 × 10(-17), odds ratio = 13.71). There is a striking difference in the frequency of rare CNVs (>50 kbp) in autism (10%, p = 2.4 × 10(-6), odds ratio = 6) or ID (16%, p = 3.55 × 10(-12), odds ratio = 10) compared to dyslexia (2%) with essentially no difference in large CNV burden among dyslexia patients compared to controls. Rare CNVs were more likely to arise de novo (64%) in ID when compared to autism (40%) or dyslexia (0%). We observed a significantly increased large CNV burden in individuals with ID and multiple congenital anomalies (MCA) compared to ID alone (p = 0.001, odds ratio = 2.54). Our data suggest that large CNV burden positively correlates with the severity of childhood disability: ID with MCA being most severely affected and dyslexics being indistinguishable from controls. When autism without ID was considered separately, the increase in CNV burden was modest compared to controls (p = 0.07, odds ratio = 2.33).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号