首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   450篇
  免费   48篇
  国内免费   49篇
  547篇
  2024年   1篇
  2023年   6篇
  2022年   9篇
  2021年   18篇
  2020年   22篇
  2019年   12篇
  2018年   12篇
  2017年   8篇
  2016年   11篇
  2015年   27篇
  2014年   27篇
  2013年   26篇
  2012年   42篇
  2011年   26篇
  2010年   26篇
  2009年   13篇
  2008年   28篇
  2007年   14篇
  2006年   25篇
  2005年   26篇
  2004年   22篇
  2003年   22篇
  2002年   20篇
  2001年   20篇
  2000年   14篇
  1999年   19篇
  1998年   11篇
  1997年   1篇
  1996年   5篇
  1995年   7篇
  1994年   7篇
  1993年   5篇
  1992年   1篇
  1991年   1篇
  1989年   2篇
  1988年   3篇
  1987年   1篇
  1985年   2篇
  1984年   1篇
  1979年   1篇
  1973年   1篇
  1969年   1篇
  1960年   1篇
排序方式: 共有547条查询结果,搜索用时 0 毫秒
81.
Brain–pancreas relative protein (BPRP) is a novel protein that mainly expresses in brain and pancreas. In our previous study, we found that various stressors significantly decreased the expression of BPRP in pancreas in vivo, accompanied by changes in insulin and glucose levels, and that expression of BPRP in pancreas also decreased significantly in diabetic rats induced by Streptozocin (STZ). All these findings suggest that BPRP may be a glucose or insulin-sensitive protein. However, how the changes in insulin or glucose levels influence the expression of BPRP in hippocampus requires further study. Here, we investigated the effects of insulin or glucose on the expression of BPRP in primary cultured hippocampal neurons. We supplied hippocampal neurons with glucose, insulin, or supernatant from pancreatic β-cells, which secrete insulin into the supernatant. Our data showed that insulin had beneficial effect on the viability while no significant effect on the expression of BPRP in hippocampal neurons. On the contrary, 40 mM glucose or free glucose culture significantly decreased the expression of BPRP, while had no significant effect on the viability and apoptosis of hippocampal neurons. Further study showed that levels of insulin in the supernatant collected from pancreatic β-cells medium changed over days, and that supernatant increased the viability of hippocampal neurons, while it had no obvious effect on the expression of BPRP in hippocampal neurons. These results suggest that BPRP may be a glucose-sensitive protein.  相似文献   
82.
We have recently shown that hyperosmotic stress activates p65/RelB NFkappaB in cultured cardiomyocytes with dichotomic actions on caspase activation and cell death. It remains unexplored how NFkappaB is regulated in cultured rat cardiomyocytes exposed to hyperosmotic stress. We study here: (a) if hyperosmotic stress triggers reactive oxygen species (ROS) generation and in turn whether they regulate NFkappaB and (b) if insulin-like growth factor-1 (IGF-1) modulates ROS production and NFkappaB activation in hyperosmotically-stressed cardiomyocytes. The results showed that hyperosmotic stress generated ROS in cultured cardiac myocytes, in particular the hydroxyl and superoxide species, which were inhibited by N-acetylcysteine (NAC). Hyperosmotic stress-induced NFkappaB activation as determined by IkappaBalpha degradation and NFkappaB DNA binding. NFkappaB activation and procaspase-3 and -9 fragmentation were prevented by NAC and IGF-1. However, this growth factor did not decrease ROS generation induced by hyperosmotic stress, suggesting that its actions over NFkappaB and caspase activation may be due to modulation of events downstream of ROS generation. We conclude that hyperosmotic stress induces ROS, which in turn activates NFkappaB and caspases. IGF-1 prevents NFkappaB activation by a ROS-independent mechanism.  相似文献   
83.
Clinical inhibitor amprenavir (APV) is less effective on HIV‐2 protease (PR2) than on HIV‐1 protease (PR1). We solved the crystal structure of PR2 with APV at 1.5 Å resolution to identify structural changes associated with the lowered inhibition. Furthermore, we analyzed the PR1 mutant (PR1M) with substitutions V32I, I47V, and V82I that mimic the inhibitor binding site of PR2. PR1M more closely resembled PR2 than PR1 in catalytic efficiency on four substrate peptides and inhibition by APV, whereas few differences were seen for two other substrates and inhibition by saquinavir (SQV) and darunavir (DRV). High resolution crystal structures of PR1M with APV, DRV, and SQV were compared with available PR1 and PR2 complexes. Val/Ile32 and Ile/Val47 showed compensating interactions with SQV in PR1M and PR1, however, Ile82 interacted with a second SQV bound in an extension of the active site cavity of PR1M. Residues 32 and 82 maintained similar interactions with DRV and APV in all the enzymes, whereas Val47 and Ile47 had opposing effects in the two subunits. Significantly diminished interactions were seen for the aniline of APV bound in PR1M and PR2 relative to the strong hydrogen bonds observed in PR1, consistent with 15‐ and 19‐fold weaker inhibition, respectively. Overall, PR1M partially replicates the specificity of PR2 and gives insight into drug resistant mutations at residues 32, 47, and 82. Moreover, this analysis provides a structural explanation for the weaker antiviral effects of APV on HIV‐2.  相似文献   
84.
Chen T  Yang K  Yu J  Meng W  Yuan D  Bi F  Liu F  Liu J  Dai B  Chen X  Wang F  Zeng F  Xu H  Hu J  Mo X 《Cell research》2012,22(1):248-258
Gastric cancer is the fourth most common cancer worldwide, with a high rate of death and low 5-year survival rate. To date, there is a lack of efficient therapeutic protocols for gastric cancer. Recent studies suggest that cancer stem cells (CSCs) are responsible for tumor initiation, invasion, metastasis, and resistance to anticancer therapies. Thus, therapies that target gastric CSCs are attractive. However, CSCs in human gastric adenocarcinoma (GAC) have not been described. Here, we identify CSCs in tumor tissues and peripheral blood from GAC patients. CSCs of human GAC (GCSCs) that are isolated from tumor tissues and peripheral blood of patients carried CD44 and CD54 surface markers, generated tumors that highly resemble the original human tumors when injected into immunodeficient mice, differentiated into gastric epithelial cells in vitro, and self-renewed in vivo and in vitro. Our findings suggest that effective therapeutic protocols must target GCSCs. The capture of GCSCs from the circulation of GAC patients also shows great potential for identification of a critical cell population potentially responsible for tumor metastasis, and provides an effective protocol for early diagnosis and longitudinal monitoring of gastric cancer.  相似文献   
85.
86.
Although the expression of PECAM-1 (CD31) on vascular and haematopoietic cells within the bone marrow microenvironment has been recognized for some time, its physiological role within this niche remains unexplored. In this study we show that PECAM-1 influences steady state hematopoietic stem cell (HSC) progenitor numbers in the peripheral blood but not the bone marrow compartment. PECAM-1(-/-) mice have higher levels of HSC progenitors in the blood compared to their littermate controls. We show that PECAM-1 is required on both progenitors and bone marrow vascular cells in order for efficient transition between the blood and bone marrow to occur. We have identified key roles for PECAM-1 in both the regulation of HSC migration to the chemokine CXCL12, as well as maintaining levels of the matrix degrading enzyme MMP-9 in the bone marrow vascular niche. Using intravital microscopy and adoptive transfer of either wild type (WT) or PECAM-1(-/-) bone marrow precursors, we demonstrate that the increase in HSC progenitors in the blood is due in part to a reduced ability to migrate from blood to the bone marrow vascular niche. These findings suggest a novel role for PECAM-1 as a regulator of resting homeostatic progenitor cell numbers in the blood.  相似文献   
87.
88.
Molecular Biology Reports - Analysis of DNA polymorphisms are the primary technique used for personal identification in forensic cases. However, DNA samples collected as evidence from crime scenes...  相似文献   
89.
影响陕西种源香椿硬枝插条培养生产芽菜因素的研究   总被引:1,自引:0,他引:1  
试验结果表明,陕西种源香椿硬枝插条在温室进行芽菜培育休眠芽萌发的最低温度指标为16.8℃,有效积温39.6℃。培养液;(NH4)2SO40.6g/L (NH4)H2PO40.45g/L KH2PO41.1g/L CaSO40.6g/L MgSO40.5g/L,其效果较其它溶液为好。  相似文献   
90.
Vitamin K epoxide reductase complex subunit 1 (VKORC1) reduces vitamin K epoxide in the vitamin K cycle for post-translational modification of proteins that are involved in a variety of biological functions. However, the physiological function of VKORC1-like 1 (VKORC1L1), a paralogous enzyme sharing about 50% protein identity with VKORC1, is unknown. Here we determined the structural and functional differences of these two enzymes using fluorescence protease protection (FPP) assay and an in vivo cell-based activity assay. We show that in vivo VKORC1L1 reduces vitamin K epoxide to support vitamin K-dependent carboxylation as efficiently as does VKORC1. However, FPP assays show that unlike VKORC1, VKORC1L1 is a four-transmembrane domain protein with both its termini located in the cytoplasm. Moreover, the conserved loop cysteines, which are not required for VKORC1 activity, are essential for VKORC1L1''s active site regeneration. Results from domain exchanges between VKORC1L1 and VKORC1 suggest that it is VKORC1L1''s overall structure that uniquely allows for active site regeneration by the conserved loop cysteines. Intermediate disulfide trapping results confirmed an intra-molecular electron transfer pathway for VKORC1L1''s active site reduction. Our results allow us to propose a concerted action of the four conserved cysteines of VKORC1L1 for active site regeneration; the second loop cysteine, Cys-58, attacks the active site disulfide, forming an intermediate disulfide with Cys-139; the first loop cysteine, Cys-50, attacks the intermediate disulfide resulting in active site reduction. The different membrane topologies and reaction mechanisms between VKORC1L1 and VKORC1 suggest that these two proteins might have different physiological functions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号