首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1933篇
  免费   91篇
  国内免费   1篇
  2025篇
  2023年   7篇
  2022年   13篇
  2021年   26篇
  2020年   16篇
  2019年   26篇
  2018年   31篇
  2017年   21篇
  2016年   44篇
  2015年   51篇
  2014年   75篇
  2013年   144篇
  2012年   136篇
  2011年   130篇
  2010年   84篇
  2009年   67篇
  2008年   142篇
  2007年   118篇
  2006年   106篇
  2005年   138篇
  2004年   127篇
  2003年   130篇
  2002年   115篇
  2001年   14篇
  2000年   23篇
  1999年   17篇
  1998年   26篇
  1997年   27篇
  1996年   20篇
  1995年   14篇
  1994年   16篇
  1993年   8篇
  1992年   13篇
  1991年   13篇
  1990年   12篇
  1989年   8篇
  1988年   6篇
  1987年   8篇
  1986年   4篇
  1985年   7篇
  1984年   7篇
  1983年   6篇
  1982年   5篇
  1981年   5篇
  1980年   2篇
  1979年   3篇
  1978年   3篇
  1975年   3篇
  1973年   2篇
  1970年   2篇
  1968年   3篇
排序方式: 共有2025条查询结果,搜索用时 15 毫秒
41.
42.
We have isolated four strains of Rhodococcus which specifically degrade estrogens by using enrichment culture of activated sludge from wastewater treatment plants. Strain Y 50158, identified as Rhodococcus zopfii, completely and rapidly degraded 100 mg of 17beta-estradiol, estrone, estriol, and ethinyl estradiol/liter, as demonstrated by thin-layer chromatography and gas chromatography-mass spectrometry analyses. Strains Y 50155, Y 50156, and Y 50157, identified as Rhodococcus equi, showed degradation activities comparable with that of Y 50158. Using the random amplified polymorphism DNA fingerprinting test, these three strains were confirmed to have been derived from different sources. R. zopfii Y 50158, which showed the highest activity among these four strains, revealed that the strain selectively degraded 17beta-estradiol during jar fermentation, even when glucose was used as a readily utilizable carbon source in the culture medium. Measurement of estrogenic activities with human breast cancer-derived MVLN cells showed that these four strains each degraded 100 mg of 17beta-estradiol/liter to 1/100 of the specific activity level after 24 h. It is thus suggested that these strains degrade 17beta-estradiol into substances without estrogenic activity.  相似文献   
43.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), an endocrine disruptor, causes reproductive and developmental toxic effects in pups following maternal exposure in a number of animal models. Our previous studies have demonstrated that TCDD imprints sexual immaturity by suppressing the expression of fetal pituitary gonadotropins, the regulators of gonadal steroidogenesis. In the present study, we discovered that all TCDD-produced damage to fetal production of pituitary gonadotropins as well as testicular steroidogenesis can be repaired by co-treating pregnant rats with α-lipoic acid (LA), an obligate co-factor for intermediary metabolism including energy production. While LA also acts as an anti-oxidant, other anti-oxidants; i.e., ascorbic acid, butylated hydroxyanisole and edaravone, failed to exhibit any beneficial effects. Neither wasting syndrome nor CYP1A1 induction in the fetal brain caused through the activation of aryl hydrocarbon receptor (AhR) could be attenuated by LA. These lines of evidence suggest that oxidative stress makes only a minor contribution to the TCDD-induced disorder of fetal steroidogenesis, and LA has a restorative effect by targeting on mechanism(s) other than AhR activation. Following a metabolomic analysis, it was found that TCDD caused a more marked change in the hypothalamus, a pituitary regulator, than in the pituitary itself. Although the components of the tricarboxylic acid cycle and the ATP content of the fetal hypothalamus were significantly changed by TCDD, all these changes were again rectified by exogenous LA. We also provided evidence that the fetal hypothalamic content of endogenous LA is significantly reduced following maternal exposure to TCDD. Thus, the data obtained strongly suggest that TCDD reduces the expression of fetal pituitary gonadotropins to imprint sexual immaturity or disturb development by suppressing the level of LA, one of the key players serving energy production.  相似文献   
44.
Eukaryotic typical 2-Cys type peroxiredoxin (Prx) is inactivated by hyperoxidation of the peroxidatic cysteine to a sulphinic acid in a catalytic cycle-dependent manner. This inactivation process has been well documented for cytosolic isoforms of Prx. However, such a hyperoxidative inactivation has not fully been investigated in Prx-4, a secretable endoplasmic reticulum-resident isoform, in spite of being a typical 2-Cys type, and details of this process are reported herein. As has been observed in many peroxiredoxins, the peroxidase activity of Prx-4 was almost completely inhibited in the reaction with t-butyl hydroperoxide. On the other hand, when H(2)O(2) was used as the substrate, the peroxidase activity significantly remained after oxidative damage. In spite of these different consequences, mass spectrometric analyses indicated that both reactions resulted in the same oxidative damage, i.e. sulphinic acid formation at the peroxidatic cysteine, suggesting that another cysteine in the active site confers the peroxidase activity. As suggested by the analyses using cysteine-substituted mutants sulphinic acid formation at the peroxidatic cysteine may play a role in the development of the possible alternative mechanism, thereby sustaining the peroxidase activity that prefers H(2)O(2).  相似文献   
45.

Background

Cholestatic liver diseases exhibit higher levels of serum γ-glutamyl transpeptidase (GGT) and incidence of secondary osteoporosis. GGT has been identified as a novel bone-resorbing factor that stimulates osteoclast formation. The aim of this study was to elucidate the interaction of elevated GGT levels and cholestatic liver disease-induced bone loss.

Methods

Wistar rats were divided into three groups: sham-operated control (SO) rats, bile duct ligation (BDL) rats, and anti-GGT antibody-treated BDL rats (AGT). Serum GGT level was measured. Bone mineral density (BMD) was analyzed by dual-energy X-ray absorptiometry. Bone morphometric parameters and microarchitectural properties were determined by micro-computed tomography and histomorphometry of the distal metaphysis of femurs. Alterations of bone metabolism-related factors were evaluated by cytokine array. Effects of GGT on osteoblasts or stromal cells were evaluated by RT-PCR, enzyme activity, and mineralization ability.

Results

Serum levels of GGT were significantly elevated in the BDL-group. In the BDL group, BMD, bone mass percentage, and osteoblast number were significantly decreased, whereas osteoclast number was significantly increased. These alterations were markedly attenuated in the AGT group. The mRNA levels of vascular endothelial growth factor-A, LPS-induced CXC chemokine, monocyte chemoattractant protein-1, tumor necrosis factor-α interleukin-1β and receptor activator of nuclear factor-kappa B ligand were upregulated, and those of interferon-γ and osteoprotegerin were downregulated in the GGT-treated stromal cells. Furthermore, GGT inhibited mineral nodule formation and expression of alkaline phosphatase and bone sialo-protein in osteoblastic cells.

Conclusion

Our results indicate that elevated GGT level is involved in hepatic osteodystrophy through secretion of bone resorbing factor from GGT-stimulated osteoblasts/bone marrow stromal cells. In addition, GGT also possesses suppressive effects on bone formation. Managing elevated GGT levels by anti-GGT antibody may become a novel therapeutic agent for hepatic osteodystrophy in chronic liver diseases.  相似文献   
46.
47.
Optimum efficacy of therapeutic cancer vaccines may require combinations that generate effective antitumor immune responses, as well as overcome immune evasion and tolerance mechanisms mediated by progressing tumor. Previous studies showed that IL-13Rα2, a unique tumor-associated Ag, is a promising target for cancer immunotherapy. A targeted cytotoxin composed of IL-13 and mutated Pseudomonas exotoxin induced specific killing of IL-13Rα2(+) tumor cells. When combined with IL-13Rα2 DNA cancer vaccine, surprisingly, it mediated synergistic antitumor effects on tumor growth and metastasis in established murine breast carcinoma and sarcoma tumor models. The mechanism of synergistic activity involved direct killing of tumor cells and cell-mediated immune responses, as well as elimination of myeloid-derived suppressor cells and, consequently, regulatory T cells. These novel results provide a strong rationale for combining immunotoxins with cancer vaccines for the treatment of patients with advanced cancer.  相似文献   
48.
Serum sphingomyelin (SM) has predictive value in the development of atherosclerosis. Furthermore, SM plays important roles in cell membrane structure, signal transduction pathways, and lipid raft formation. A convenient enzymatic method for SM is available for routine laboratory practice, but the enzyme specificity is not sufficient because of nonspecific reactions with lysophosphatidylcholine (LPC). Based on the differential specificity of selected enzymes toward choline-containing phospholipids, a two-step assay for measuring SM was constructed and its performance was evaluated using sera from healthy individuals on a Hitachi 7170 autoanalyzer. Results from this assay were highly correlated with theoretical serum SM concentrations estimated by subtracting phosphatidylcholine (PC) and LPC concentrations from that of total phospholipids determined using previously established methods. There was a good correlation between the results of SM assayed by the proposed method and the existing enzymatic method in sera from healthy individuals. Moreover, the proposed method was superior to the existing method in preventing nonspecific reactions with LPC present in sera. The proposed method does not require any pretreatment, uses 2.5 μl of serum samples, and requires only 10 min on an autoanalyzer. This high-throughput method can measure serum SM with sufficient specificity for clinical purposes and is applicable in routine laboratory practice.  相似文献   
49.
The effect of stress deprivation on the tendon tissue has been an important focus in the field of biomechanics. However, less is known about the in vivo effect of stress deprivation on fibroblast apoptosis as of yet. This study was conducted to test a hypothesis that complete stress deprivation of the patellar tendon induces fibroblast apoptosis in vivo with activation of Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38) within 24 h after treatment. A total of 35 mature rabbits were divided into stress-shielded (n=15), sham-operated (n=15), and control (n=5) groups. To completely shield the patellar tendon from stress, we used an established surgical method. Animals were sacrificed at 24 h, and 2, 4, 7, and 14 days after the treatment. Tendon specimens underwent TUNEL assay and immunohistological examinations of active caspase-3, JNK, and p38. Both the number and the ratio of TUNEL-positive and caspase-3-positive cells were significantly greater (p<0.0001) in the stress-shielded group than in the sham group at 24 h, 2, 4, and 7 days. Concerning JNK and p38, both the number and the ratio were significantly greater (p<0.0001) in the stress-shielded group than in the sham group at 24 h, 2, and 4 days. This study demonstrated that complete stress deprivation induces fibroblast apoptosis in vivo with activation of JNK and p38 within 24 h. This fact suggested that the fibroblast apoptosis caused by stress deprivation is induced via the mitogen-activated protein kinase signaling pathway.  相似文献   
50.
Prion infection induces conformational conversion of the normal prion protein PrPC, into the pathogenic isoform PrPSc, in prion diseases. It has been shown that PrP-knockout (Prnp0/0) mice transgenically reconstituted with a mouse-hamster chimeric PrP lacking N-terminal residues 23-88, or Tg(MHM2Δ23-88)/Prnp0/0 mice, neither developed the disease nor accumulated MHM2ScΔ23-88 in their brains after inoculation with RML prions. In contrast, RML-inoculated Tg(MHM2Δ23-88)/Prnp0/+ mice developed the disease with abundant accumulation of MHM2ScΔ23-88 in their brains. These results indicate that MHM2Δ23-88 itself might either lose or greatly reduce the converting capacity to MHM2ScΔ23-88, and that the co-expressing wild-type PrPC can stimulate the conversion of MHM2Δ23-88 to MHM2ScΔ23-88 in trans. In the present study, we confirmed that Tg(MHM2Δ23-88)/Prnp0/0 mice remained resistant to RML prions for up to 730 days after inoculation. However, we found that Tg(MHM2Δ23-88)/Prnp0/0 mice were susceptible to 22L prions, developing the disease with prolonged incubation times and accumulating MHM2ScΔ23-88 in their brains. We also found accelerated conversion of MHM2Δ23-88 into MHM2ScΔ23-88 in the brains of RML- and 22L-inoculated Tg(MHM2Δ23-88)/Prnp0/+ mice. However, wild-type PrPSc accumulated less in the brains of these inoculated Tg(MHM2Δ23-88)/Prnp0/+ mice, compared with RML- and 22L-inoculated Prnp0/+ mice. These results show that MHM2Δ23-88 itself can convert into MHM2ScΔ23-88 without the help of the trans-acting PrPC, and that, irrespective of prion strains inoculated, the co-expressing wild-type PrPC stimulates the conversion of MHM2Δ23-88 into MHM2ScΔ23-88, but to the contrary, the co-expressing MHM2Δ23-88 disturbs the conversion of wild-type PrPC into PrPSc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号