首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1931篇
  免费   91篇
  国内免费   1篇
  2023年   5篇
  2022年   13篇
  2021年   26篇
  2020年   16篇
  2019年   26篇
  2018年   31篇
  2017年   21篇
  2016年   44篇
  2015年   51篇
  2014年   75篇
  2013年   144篇
  2012年   136篇
  2011年   130篇
  2010年   84篇
  2009年   67篇
  2008年   142篇
  2007年   118篇
  2006年   106篇
  2005年   138篇
  2004年   127篇
  2003年   130篇
  2002年   115篇
  2001年   14篇
  2000年   23篇
  1999年   17篇
  1998年   26篇
  1997年   27篇
  1996年   20篇
  1995年   14篇
  1994年   16篇
  1993年   8篇
  1992年   13篇
  1991年   13篇
  1990年   12篇
  1989年   8篇
  1988年   6篇
  1987年   8篇
  1986年   4篇
  1985年   7篇
  1984年   7篇
  1983年   6篇
  1982年   5篇
  1981年   5篇
  1980年   2篇
  1979年   3篇
  1978年   3篇
  1975年   3篇
  1973年   2篇
  1970年   2篇
  1968年   3篇
排序方式: 共有2023条查询结果,搜索用时 15 毫秒
101.
Smad3 is an intracellular signaling molecule that mediates the signal from transforming growth factor-beta (TGF-beta) and activin receptors. In this study, we reveal hypomineralized enamel in mice with the targeted deletion of the Smad3 gene. The Smad3 (-/-) mice had chalky white incisor enamel, while the enamel of the wild-type or Smad3 (+/-) mice was yellow-brown. Histological analysis of the undecalcified sections showed that the enamel thickness of the maxillary incisors in the Smad3 (-/-) mice was similar to that of the wild-type and Smad3 (+/-) mice while that the enamel of the maxillary molars in Smad3 (-/-) mice was disrupted in places. Microcomputed tomography (microCT) analysis revealed that the mineralization of the maxillary incisors and mandibular molars in the Smad3 (-/-) mice showed significant reduction in the degree of mineralization when compared to that of the wild-type and Smad3 (+/-) mice. Scanning electron microscopic (SEM) analysis of the mandibular incisors revealed that the enamel surface of the Smad3 (-/-) mice was irregular and disrupted in places and showed images similar to decalcified mature enamel. The histological analysis of the decalcified sections showed that distinct morphological changes in the ameloblasts at the secretory and maturational stages were not observed between the Smad3 (-/-) and Smad3 (+/-) or wild-type mice, while the enamel matrix was observed in the decalcified sections of the mandibular molars in the Smad3 (-/-) mice. These results suggested that Smad3 was required for enamel biomineralization, and TGF-beta and activin signaling might be critical for its process.  相似文献   
102.
The iron storage protein, apoferritin, has a cavity in which iron is oxidized and stored as a hydrated oxide core. The size of the core is about 7 nm in diameter and is regulated by the cavity size. The cavity can be utilized as a nanoreactor to grow inorganic crystals. We incubated apoferritin in nickel or chromium salt solutions to fabricate hydroxide nanoparticles in the cavity. By using a solution containing dissolved carbon dioxide and by precisely controlling the pH, we succeeded in fabricating nickel and chromium cores. During the hydroxylation process of nickel ions a large portion of the apoferritin precipitated through bulk precipitation of nickel hydroxide. Bulk precipitation was suppressed by adding ammonium ions. However, even in the presence of ammonium ions the core did not form using a degassed solution. We concluded that carbonate ions were indispensable for core formation and that the ammonium ions prevented precipitation in the bulk solution. The optimized condition for nickel core formation was 0.3 mg/mL horse spleen apoferritin and 5 mM ammonium nickel sulfate in water containing dissolved carbon dioxide. The pH was maintained at 8.65 using two buffer solutions: 150 mM HEPES (pH 7.5) and 195 mM CAPSO (pH 9.5) with 20 mM ammonium at 23 degrees C. The pH had not changed after 48 h. After 24 h of incubation, all apoferritins remained in the supernatant and all of them had cores. Recombinant L-ferritin showed less precipitation even above a pH of 8.65. A chromium core was formed under the following conditions: 0.1 mg/mL apoferritin, 1 mM ammonium chromium sulfate, 100 mM HEPES (pH 7.5) with a solution containing dissolved carbon dioxide. About 80% of the supernatant apoferritin (0.07 mg/mL) formed a core. In nickel and chromium core formation, carbonate ions would play an important role in accelerating the hydroxylation in the apoferritin cavity compared to the bulk solution outside.  相似文献   
103.
An environmentally benign and stereoselective beta-mannopyranosylation has been developed employing 4,6-O-benzylidene-protected mannopyranosyl diethyl phosphite as a glycosyl donor and montmorillonite K-10 as an activator.  相似文献   
104.
Skeletal muscle-derived CD34+/45- (Sk-34) cells were identified as a new candidate for stem cells. However, the relationship between Sk-34 cells and side-population (SP) cells is unknown. Here, we demonstrate that Sk-34 cells prepared from murine skeletal muscles consist wholly of main-population (MP) cells. The Sk-34 cells included only a few SP cells (1:1000, SP:MP). Colony-forming units of Sk-34 cells of both SP and MP possessed the same potential to differentiate into adipocytes, endothelial, and myogenic cells and showed the same colony-forming activity (1.6%). In addition, the colony-forming units of the CD34-/45- (double negative: DN) population were found to begin CD34 expression and to possess the potential to differentiate into myogenic and endothelial cells. We also found that expression of CD34 antigen precedes MyoD expression during the myogenic process of DN cells. Furthermore, both Sk-34 and DN cell populations were mostly negative for CD73 (93-95%), whereas the CD45+ cell population was >25% positive for CD73, and this trend was also seen in bone marrow-derived CD45+ cells. These results indicate that the MP cell population is about 99.9% responsible for the reported in vitro myogenic-endothelial responses of skeletal muscle-derived cells.  相似文献   
105.
alpha-Galactosidases catalyze the hydrolysis of alpha-1,6-linked galactosyl residues from galacto-oligosaccharides and polymeric galacto-(gluco)mannans. The crystal structure of rice alpha-galactosidase has been determined at 1.5A resolution using the multiple isomorphous replacement method. The structure consisted of a catalytic domain and a C-terminal domain and was essentially the same as that of alpha-N-acetylgalactosaminidase, which is the same member of glycosyl hydrolase family 27. The catalytic domain had a (beta/alpha)8-barrel structure, and the C-terminal domain was made up of eight beta-strands containing a Greek key motif. The structure was solved as a complex with d-galactose, providing a mode of substrate binding in detail. The d-galactose molecule was found bound in the active site pocket on the C-terminal side of the central beta-barrel of the catalytic domain. The d-galactose molecule consisted of a mixture of two anomers present in a ratio equal to their natural abundance. Structural comparisons of rice alpha-galactosidase with chicken alpha-N-acetylgalactosaminidase provided further understanding of the substrate recognition mechanism in these enzymes.  相似文献   
106.
CD44 is an adhesion molecule that serves as a cell surface receptor for several extracellular matrix components, including hyaluronan (HA). The proteolytic cleavage of CD44 from the cell surface plays a critical role in the migration of tumor cells. Although this cleavage can be induced by certain stimuli such as phorbol ester and anti-CD44 antibodies in vitro, the physiological inducer of CD44 cleavage in vivo is unknown. Here, we demonstrate that HA oligosaccharides of a specific size range induce CD44 cleavage from tumor cells. Fragmented HA containing 6-mers to 14-mers enhanced CD44 cleavage dose-dependently by interacting with CD44, whereas a large polymer HA failed to enhance CD44 cleavage, although it bound to CD44. Examination using uniformly sized HA oligosaccharides revealed that HAs smaller than 36 kDa significantly enhanced CD44 cleavage. In particular, the 6.9-kDa HA (36-mers) not only enhanced CD44 cleavage but also promoted tumor cell motility, which was completely inhibited by an anti-CD44 monoclonal antibody. These results raise the possibility that small HA oligosaccharides, which are known to occur in various tumor tissues, promote tumor invasion by enhancing the tumor cell motility that may be driven by CD44 cleavage.  相似文献   
107.
The kinetics of the association between cytochrome P450 (P450) and microsomal epoxide hydrolase (mEH) was studied by means of resonant mirror based on the principle of surface plasmon resonance. The dissociation equilibrium constants (K(D)) for the affinity of P450 enzymes for mEH were estimated by resonant mirror using an optical biosensor cell covalently bound to rat mEH. Comparable K(D) values were obtained for CYP1A1 and 2B1, and these were greater by one order of magnitude than that for the CYP2C11. To clarify the influences of P450 enzymes on the catalytic activity of mEH, the hydrolyzing activity for styrene oxide and benzo(a)pyrene-7,8-oxide [B(a)P-oxide] was analyzed in the presence or absence of P450s. Styrene oxide hydrolysis was activated by all P450s including the CYP1A, 2B, 2C, and 3A subfamilies. In agreement with the association affinity determined by resonant mirror, CYP2C11 tends to have enhanced activity for styrene oxide hydrolysis. On the other hand, B(a)P-oxide hydrolysis was enhanced by only CYP2C11 while CYP1A1 and CYP2B1 had no effect. These results suggest that (1) many P450 enzymes associate nonspecifically with mEH, (2) the CYP2C11 plays a greater role in the association/activation of mEH and (3) the P450-mediated activation of mEH depends upon the substrate of mEH.  相似文献   
108.
The mutations in superoxide dismutase 1 (SOD1) cause approximately 20% of familial amyotrophic lateral sclerosis cases. A toxic gain of function has been considered to be the cause of the disease, but its molecular mechanism remains uncertain. To determine whether the subcellular localization of mutant SOD1 is crucial to mutant SOD1-mediated cell death, we produced neuronal cell models with accumulation of SOD1 in each subcellular fraction/organelle, such as the cytosol, nucleus, endoplasmic reticulum, and mitochondria. We showed that the localization of mutant SOD1 in the mitochondria triggered the release of mitochondrial cytochrome c followed by the activation of caspase cascade and induced neuronal cell death without cytoplasmic mutant SOD1 aggregate formation. Nuclear and endoplasmic reticulum localization of mutant SOD1 did not induce cell death. These results suggest that the localization of mutant SOD1 in the mitochondria is critical in the pathogenesis of mutant SOD1-associated familial amyotrophic lateral sclerosis.  相似文献   
109.
To investigate the immunogenic property of peptides derived from the synovial sarcoma-specific SYT-SSX fusion gene, we synthesized four peptides according to the binding motif for HLA-A24. The peptides, SS391 (PYGYDQIMPK) and SS393 (GYDQIMPKK), were derived from the breakpoint of SYT-SSX, and SS449a (AWTHRLRER) and SS449b (AWTHRLRERK) were from the SSX region. These peptides were tested for their reactivity with CTL precursors (CTLps) in 16 synovial sarcoma patients using HLA-A24/SYT-SSX peptide tetramers and also for induction of specific CTLs from four HLA-A24(+) synovial sarcoma patients. Tetramer analysis indicated that the increased CTLp frequency to the SYT-SSX was associated with pulmonary metastasis in synovial sarcoma patients (p < 0.03). CTLs were induced from PBLs of two synovial sarcoma patients using the peptide mixture of SS391 and SS393, which lysed HLA-A24(+) synovial sarcoma cells expressing SYT-SSX as well as the peptide-pulsed target cells in an HLA class I-restricted manner. These findings suggest that aberrantly expressed SYT-SSX gene products have primed SYT-SSX-specific CTLps in vivo and increased their frequency in synovial sarcoma patients. The identification of SYT-SSX peptides may offer an opportunity to design peptide-based immunotherapeutic approaches for HLA-A24(+) patients with synovial sarcoma.  相似文献   
110.
Mutations in the superoxide dismutase 1 (SOD1) gene cause the degeneration of motor neurons in familial amyotrophic lateral sclerosis (FALS). An apoptotic process including caspase-1 and -3 has been shown to participate in the pathogenesis of FALS transgenic (Tg) mouse model. Here we report that IAP proteins, potent inhibitors of apoptosis, are involved in the FALS Tg mouse pathologic process. The levels of X-linked inhibitor of apoptosis protein (XIAP) mRNA and protein were significantly decreased in the spinal cord of symptomatic G93A-SOD1 Tg mice compared with littermates. In contrast, the levels of cIAP-1 mRNA and protein were increased in symptomatic G93A-SOD1 Tg mice, whereas the levels of cIAP-2 mRNA and protein were unchanged. In situ hybridization showed that the expression of XIAP was remarkably reduced in the motor neurons of Tg mice, and the expression of cIAP-1 was strongly increased in the reactive astrocytes of Tg mice. Overexpression of XIAP markedly inhibited the cell death and caspase-3 activity in the neuro2a cells expressing mutant SOD1. Deletional mutant analysis revealed that the N-terminal domain of XIAP, the BIR1-2 domains, was essential for this inhibitory activity. These results suggest that XIAP plays a role in the apoptotic mechanism in the progression of disease in mutant SOD1 Tg mice and holds therapeutic possibilities for FALS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号