首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1907篇
  免费   93篇
  国内免费   1篇
  2023年   4篇
  2022年   12篇
  2021年   26篇
  2020年   16篇
  2019年   26篇
  2018年   32篇
  2017年   21篇
  2016年   43篇
  2015年   51篇
  2014年   72篇
  2013年   142篇
  2012年   136篇
  2011年   125篇
  2010年   84篇
  2009年   66篇
  2008年   143篇
  2007年   118篇
  2006年   105篇
  2005年   138篇
  2004年   125篇
  2003年   130篇
  2002年   115篇
  2001年   14篇
  2000年   21篇
  1999年   15篇
  1998年   26篇
  1997年   26篇
  1996年   20篇
  1995年   14篇
  1994年   16篇
  1993年   7篇
  1992年   13篇
  1991年   13篇
  1990年   12篇
  1989年   10篇
  1988年   6篇
  1987年   7篇
  1986年   3篇
  1985年   7篇
  1984年   7篇
  1983年   6篇
  1982年   5篇
  1981年   5篇
  1980年   2篇
  1979年   3篇
  1978年   3篇
  1975年   2篇
  1973年   2篇
  1970年   2篇
  1968年   3篇
排序方式: 共有2001条查询结果,搜索用时 15 毫秒
131.
132.
We previously constructed two Schizosaccahromyces pombe ubiquinone-10 (or Coenzyme Q10) less mutants, which are either defective for decaprenyl diphosphate synthase or p-hydroxybenzoate polyprenyl diphosphate transferase. To further confirm the roles of ubiquinone in S. pombe, we examined the phenotype of the abc1Sp (coq8Sp) mutant, which is highly speculated to be defective in ubiquinone biosynthesis. We show here that the abc1Sp defective strain did not produce UQ-10 and could not grow on minimal medium. The abc1Sp-deficient strain required supplementation with antioxidants such as cysteine or glutathione to grow on minimal medium. In support of the antioxidant function of ubiquinone, the abc1Sp-deficient strain is sensitive to H2O2 and Cu2+. In addition, expression of the stress inducible ctt1 gene was much induced in the ubiquinone less mutant than wild type. Interestingly, we also found that the abc1-deficient strain as well as other ubiquinone less mutants produced a significant amount of H2S, which suggests that oxidation of sulfide by ubiquinone may be an important pathway for sulfur metabolism in S. pombe. Thus, analysis of the phenotypes of S. pombe ubiquinone less mutants clearly demonstrate that ubiquinone has multiple functions in the cell apart from being an integral component of the electron transfer system.  相似文献   
133.
The EtOAc extract of licorice (Glycyrrhiza uralensis roots) exhibited considerable PPAR-gamma ligand-binding activity. Bioassay-guided fractionation of the extract using a GAL-4-PPAR-gamma chimera assay method resulted in the isolation of two isoflavenes, one of which is a new compound named dehydroglyasperin D, an isoflavan, two 3-arylcoumarins, and an isoflavanone as the PPAR-gamma ligand-binding active ingredients of licorice. The isoprenyl group at C-6 and the C-2' hydroxyl group in the aromatic ring-C part in the isoflavan, isoflavene, or arylcoumarin skeleton were found to be the structural requirements for PPAR-gamma ligand-binding activity. Glycyrin, one of the main PPAR-gamma ligands of licorice, significantly decreased the blood glucose levels of genetically diabetic KK-A(y) mice.  相似文献   
134.
The effects of dioecy on community dynamics were examined by using transition matrix models for two dioecious tree species, one a superior competitor with a narrow dispersal range and the other an inferior competitor with a wide dispersal range. The models are based on tree-by-tree replacements in each identical microsite occupied by either male or female canopy trees of the superior competitor and canopy trees of the inferior competitor. Coexistence of the two species is possible not only because of a trade-off between competitive and dispersal abilities but also because of the existence of a competitor gap, which the superior competitor cannot occupy. The competitor gap is created under the male trees of the superior competitor. The inferior competitor occupies the competitor gap because of its wide dispersal range. The relative abundance of the two species depends on the dispersal ability and sex ratios of the superior competitor. The decreasing dispersal ability and the female abundance of the superior competitor increase the competitor gap, which allows the regeneration of the inferior competitor.An erratum to this article can be found at  相似文献   
135.
136.
Human erythrocyte protein phosphatase 2A, which comprises a 34-kDa catalytic C subunit, a 63-kDa regulatory A subunit and a 74-kDa regulatory B″ (δ) subunit, was phosphorylated at serine residues of B″ in vitro by cAMP-dependent protein kinase (A-kinase). In the presence and absence of 0.5 μM okadaic acid (OA), A-kinase gave maximal incorporation of 1.7 and 1.0 mol of phosphate per mol of B″, respectively. The Km value of A-kinase for CAB″ was 0.17±0.01 μM in the presence of OA. The major in vitro phosphorylation sites of B″ were identified as Ser-60, -75 and -573 in the presence of OA, and Ser-75 and -573 in the absence of OA. Phosphorylation of B″ did not dissociate B″ from CA, and stimulated the molecular activity of CAB″ toward phosphorylated H1 and H2B histones, 3.8- and 1.4-fold, respectively, but not toward phosphorylase a.  相似文献   
137.
The cDNA coding for Penicillium purpurogenum α-galactosidase (αGal) was cloned and sequenced. The deduced amino acid sequence of the α-Gal cDNA showed that the mature enzyme consisted of 419 amino acid residues with a molecular mass of 46,334 Da. The derived amino acid sequence of the enzyme showed similarity to eukaryotic αGals from plants, animals, yeasts, and filamentous fungi. The highest similarity observed (57% identity) was to Trichoderma reesei AGLI. The cDNA was expressed in Saccharomyces cerevisiae under the control of the yeast GAL10 promoter. Almost all of the enzyme produced was secreted into the culture medium, and the expression level reached was approximately 0.2 g/liter. The recombinant enzyme purified to homogeneity was highly glycosylated, showed slightly higher specific activity, and exhibited properties almost identical to those of the native enzyme from P. purpurogenum in terms of the N-terminal amino acid sequence, thermoactivity, pH profile, and mode of action on galacto-oligosaccharides.α-Galactosidase (αGal) (EC 3.2.1.22) is of particular interest in view of its biotechnological applications. αGal from coffee beans demonstrates a relatively broad substrate specificity, cleaving a variety of terminal α-galactosyl residues, including blood group B antigens on the erythrocyte surface. Treatment of type B erythrocytes with coffee bean αGal results in specific removal of the terminal α-galactosyl residues, thus generating serological type O erythrocytes (8). Cyamopsis tetragonoloba (guar) αGal effectively liberates the α-galactosyl residue of galactomannan. Removal of a quantitative proportion of galactose moieties from guar gum by αGal improves the gelling properties of the polysaccharide and makes them comparable to those of locust bean gum (18). In the sugar beet industry, αGal has been used to increase the sucrose yield by eliminating raffinose, which prevents normal crystallization of beet sugar (28). Raffinose and stachyose in beans are known to cause flatulence. αGal has the potential to alleviate these symptoms, for instance, in the treatment of soybean milk (16).αGals are also known to occur widely in microorganisms, plants, and animals, and some of them have been purified and characterized (5). Dey et al. showed that αGals are classified into two groups based on their substrate specificity. One group is specific for low-Mr α-galactosides such as pNPGal (p-nitrophenyl-α-d-galactopyranoside), melibiose, and the raffinose family of oligosaccharides. The other group of αGals acts on galactomannans and also hydrolyzes low-Mr substrates to various extents (6).We have studied the substrate specificity of αGals by using galactomanno-oligosaccharides such as Gal3Man3 (63-mono-α-d-galactopyranosyl-β-1,4-mannotriose) and Gal3Man4 (63-mono-α-d-galactopyranosyl-β-1,4-mannotetraose). The structures of these galactomanno-oligosaccharides are shown in Fig. Fig.1.1. Mortierella vinacea αGal I (11) and yeast αGals (29) are specific for the Gal3Man3 having an α-galactosyl residue (designated the terminal α-galactosyl residue) attached to the O-6 position of the nonreducing end mannose of β-1,4-mannotriose. On the other hand, Aspergillus niger 5-16 αGal (12) and Penicillium purpurogenum αGal (25) show a preference for the Gal3Man4 having an α-galactosyl residue (designated the stubbed α-galactosyl residue) attached to the O-6 position of the third mannose from the reducing end of β-1,4-mannotetraose. The M. vinacea αGal II (26) acts on both substrates to almost equal extents. The difference in specificity may be ascribed to the tertiary structures of these enzymes. Open in a separate windowFIG. 1Structures of galactomanno-oligosaccharides.Genes encoding αGals have been cloned from various sources, including humans (3), plants (20, 32), yeasts (27), filamentous fungi (4, 17, 24, 26), and bacteria (1, 2, 15). αGals from eukaryotes show a considerable degree of similarity and are grouped into family 27 (10).Here we describe the cloning of P. purpurogenum αGal cDNA, its expression in Saccharomyces cerevisiae, and the purification and characterization of the recombinant enzyme.  相似文献   
138.
An isolate ofVerticillum dahliae Vdp-4, pathogenic to both tomato and pepper (tomato-pepper pathotype), was examined for its vegetative compatibility with testers of the Japanese vegetative compatibility group (subgroups J1, J2, and J3). Seven isolates ofV. dahliae from the same field as Vdp-4 in Misato, Nagano Pref. and two isolates from Hokkaido were separately determined as either tomato pathotype (B) or pepper pathotype (C). Isolate 5922 previously reported as tomato-pepper pathotype was also examined. Compatiblenit1 and NitM mutants were obtained from all isolates except for isolates Vdp-3 and Vdt-10. The isolate of tomato-pepper pathotype Vdp-4 showed a strong reaction with VCGJ1 and J3 and was thus assigned to J3. Seven of these isolates showed compatibility and were assigned into three provisional subgroups. The isolate 5922 was self-incompatible.  相似文献   
139.
The structures of the N-linked sugar chains in the PAS-6 glycoprotein (PAS-6) from the bovine milk fat globule membrane were determined. The sugar chains were liberated from PAS-6 by hydrazinolysis, and the pyridylaminated sugar chains were separated into a neutral (6N) and two acidic chains (6M and 6D), the acidic sugar chains then being converted to neutral sugar chains (6MN and 6DN). 6N was separated into two neutral fractions (6N13 and 6N5.5), while 6MN and 6DN each gave a single fraction (6MN13 and 6DN13). The structure of 6N5.5, which was the major sugar chain in PAS-6, is proposed to be Man16 (Man13) Man14GlcNAc14GlcNAc-PA; 6N13, 6MN13 and 6DN13 are proposed to be Gal13Gal14GlcNAc12Man16 (Gal13Gal14GlcNAc12Man13) Man14GlcNAc14 (Fuc16)GlcNAc-PA;6M and 6D had 1 or 2 additional NeuAc residues at the non-reducing ends of 6MN13 and 6DN13, respectively. © 1998 Rapid Science Ltd  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号