首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2026篇
  免费   97篇
  国内免费   1篇
  2124篇
  2023年   6篇
  2022年   13篇
  2021年   26篇
  2020年   18篇
  2019年   29篇
  2018年   32篇
  2017年   21篇
  2016年   47篇
  2015年   53篇
  2014年   75篇
  2013年   148篇
  2012年   139篇
  2011年   131篇
  2010年   88篇
  2009年   67篇
  2008年   147篇
  2007年   120篇
  2006年   112篇
  2005年   146篇
  2004年   131篇
  2003年   138篇
  2002年   121篇
  2001年   20篇
  2000年   26篇
  1999年   20篇
  1998年   29篇
  1997年   29篇
  1996年   21篇
  1995年   14篇
  1994年   17篇
  1993年   9篇
  1992年   17篇
  1991年   15篇
  1990年   13篇
  1989年   13篇
  1988年   12篇
  1987年   7篇
  1986年   5篇
  1985年   7篇
  1984年   7篇
  1983年   6篇
  1982年   5篇
  1981年   5篇
  1980年   2篇
  1979年   3篇
  1978年   3篇
  1975年   2篇
  1973年   2篇
  1970年   2篇
  1968年   3篇
排序方式: 共有2124条查询结果,搜索用时 15 毫秒
91.
We synthesized various 6-fluoro-7-(1-piperazino)quinazolines based on the structure of 1 and evaluated their inhibitory activities toward both TNF-alpha production and T cell proliferation responses. Among these compounds, 7a, having the 3,4-(methylenedioxy)phenyl moiety at the C(4)-position of the quinazoline ring, showed both inhibitory activities. Furthermore, the oral treatment with 7a exhibited an anti-inflammatory effect in rats with adjuvant arthritis as well as an inhibitory activity toward LPS-induced TNF-alpha production.  相似文献   
92.
We examined in vivo a role for sterol carrier protein-2 (SCP-2) in the regulation of lipid secretion across the hepatic sinusoidal and canalicular membranes. Recombinant adenovirus Ad.rSCP2 was used to overexpress SCP-2 in livers of mice. We determined plasma, hepatic, and biliary lipid concentrations; hepatic fatty acid (FA) and cholesterol synthesis; hepatic and biliary phosphatidylcholine (PC) molecular species; and VLDL triglyceride production. In Ad.rSCP2 mice, there was marked inhibition of hepatic fatty acids and cholesterol synthesis to <62% of control mice. Hepatic triglyceride contents were decreased, while cholesterol and phospholipids concentrations were elevated in Ad.rSCP2 mice. Hepatic VLDL triglyceride production fell in Ad.rSCP2 mice to 39% of control values. As expected, biliary cholesterol, phospholipids, bile acids outputs, and biliary PC hydrophobic index were significantly increased in Ad.rSCP2 mice. These studies indicate that SCP-2 overexpression in the liver markedly inhibits lipid synthesis as well as VLDL production, and alters hepatic lipid contents. In contrast, SCP-2 increased biliary lipid secretion and the proportion of hydrophobic PC molecular species in bile. These effects suggest a key regulatory role for SCP-2 in hepatic lipid metabolism and the existence of a reciprocal relationship between the fluxes of lipids across the sinusoidal and canalicular membranes.  相似文献   
93.
In an investigation of the mechanism underlying the functional sublocalization of glycosyltransferases within the Golgi apparatus, caveolin-1 was identified as a possible cellular factor. Caveolin-1 appears to regulate the localization of N-acetylglucosaminyltransferase III (GnT-III) in the intra-Golgi subcompartment. Structural analyses of total cellular N-glycans indicated that the overexpression of GnT-III in human hepatoma cells, in which caveolin-1 is not expressed, failed to reduce branch formation, whereas expression of caveolin-1 led to a dramatic decrease in the extent of branching with no enhancement in GnT-III activity. Because the addition of a bisecting GlcNAc by GnT-III to the core beta-Man in N-glycans prevents the action of GnT-IV and GnT-V, both of which are involved in branch formation, this result suggests that caveolin-1 facilitates the prior action of GnT-III, relative to the other GnTs, on the nascent sugar chains in the Golgi apparatus and that GnT-III is redistributed in the earlier Golgi subcompartment by caveolin-1. Indeed, when caveolin-1 was expressed in human hepatoma cells, it was found to be co-localized with GnT-III, as evidenced by the fractionation of Triton X-100-insoluble cellular membranes by density gradient ultracentrifugation. Caveolin-1 may modify the biosynthetic pathway of sugar chains via the regulation of the intra-Golgi subcompartment localization of this key glycosyltransferase.  相似文献   
94.
Musashi1 is an RNA-binding protein abundantly expressed in the developing mouse central nervous system. Its restricted expression in neural precursor cells suggests that it is involved in maintenance of the character of progenitor cells. Musashi1 contains two ribonucleoprotein-type RNA-binding domains (RBDs), RBD1 and RBD2, the affinity to RNA of RBD1 being much higher than that of RBD2. We previously reported the structure and mode of interaction with RNA of RBD2. Here, we have determined the structure and mode of interaction with RNA of RBD1. We have also analyzed the surface electrostatic potential and backbone dynamics of both RBDs. The two RBDs exhibit the same ribo-nucleoprotein-type fold and commonly make contact with RNA on the beta-sheet side. On the other hand, there is a remarkable difference in surface electrostatic potential, the beta-sheet of RBD1 being positively charged, which is favorable for binding negatively charged RNA, but that of RBD2 being almost neutral. There is also a difference in backbone dynamics, the central portion of the beta-sheet of RBD1 being flexible, but that of RBD2 not being flexible. The flexibility of RBD1 may be utilized in the recognition process to facilitate an induced fit. Thus, comparative studies have revealed the origin of the higher affinity of RBD1 than that of RBD2 and indicated that the affinity of an RBD to RNA is not governed by its fold alone but is also determined by its surface electrostatic potential and/or backbone dynamics. The biological role of RBD2 with lower affinity is also discussed.  相似文献   
95.
Histidinol phosphate aminotransferase (HPAT) is a pyridoxal 5'-phosphate (PLP)-dependent aminotransferase classified into Subgroup I aminotransferase, in which aspartate aminotransferase (AspAT) is the prototype. In order to expand our knowledge on the reaction mechanism of Subgroup I aminotransferases, HPAT is an enzyme suitable for detailed mechanistic studies because of having low sequence identity with AspAT and a unique substrate recognition mode. Here we investigated the spectroscopic properties of HPAT and the effect of the C4-C4' strain of the PLP-Lys(214) Schiff base on regulating the Schiff base pK(a) in HPAT. Similar to AspAT, the PLP-form HPAT showed pH-dependent absorption spectral change with maxima at 340 nm at high pH and 420 nm at low pH, having a low pK(a) of 6.6. The pK(a) value of the methylamine-reconstituted K214A mutant enzyme was increased from 6.6 to 10.6. Mutation of Asn(157) to Ala increased the pK(a) to 9.2. Replacement of Arg(335) by Leu increased the pK(a) to 8.6. On the other hand, the pK(a) value of the N157A/R335L double mutant enzyme was 10.6. These data indicate that the strain of the Schiff base is the principal factor to decrease the pK(a) in HPAT and is crucial for the subsequent increase in the Schiff base pK(a) during catalysis, although the electrostatic effect of the arginine residue that binds the negatively charged group of the substrate is larger in HPAT than that in AspAT. Our findings also support the idea that the strain mechanism is common to Subgroup I aminotransferases.  相似文献   
96.
An environmentally benign and stereoselective beta-mannopyranosylation has been developed employing 4,6-O-benzylidene-protected mannopyranosyl diethyl phosphite as a glycosyl donor and montmorillonite K-10 as an activator.  相似文献   
97.
Skeletal muscle-derived CD34+/45- (Sk-34) cells were identified as a new candidate for stem cells. However, the relationship between Sk-34 cells and side-population (SP) cells is unknown. Here, we demonstrate that Sk-34 cells prepared from murine skeletal muscles consist wholly of main-population (MP) cells. The Sk-34 cells included only a few SP cells (1:1000, SP:MP). Colony-forming units of Sk-34 cells of both SP and MP possessed the same potential to differentiate into adipocytes, endothelial, and myogenic cells and showed the same colony-forming activity (1.6%). In addition, the colony-forming units of the CD34-/45- (double negative: DN) population were found to begin CD34 expression and to possess the potential to differentiate into myogenic and endothelial cells. We also found that expression of CD34 antigen precedes MyoD expression during the myogenic process of DN cells. Furthermore, both Sk-34 and DN cell populations were mostly negative for CD73 (93-95%), whereas the CD45+ cell population was >25% positive for CD73, and this trend was also seen in bone marrow-derived CD45+ cells. These results indicate that the MP cell population is about 99.9% responsible for the reported in vitro myogenic-endothelial responses of skeletal muscle-derived cells.  相似文献   
98.
alpha-Galactosidases catalyze the hydrolysis of alpha-1,6-linked galactosyl residues from galacto-oligosaccharides and polymeric galacto-(gluco)mannans. The crystal structure of rice alpha-galactosidase has been determined at 1.5A resolution using the multiple isomorphous replacement method. The structure consisted of a catalytic domain and a C-terminal domain and was essentially the same as that of alpha-N-acetylgalactosaminidase, which is the same member of glycosyl hydrolase family 27. The catalytic domain had a (beta/alpha)8-barrel structure, and the C-terminal domain was made up of eight beta-strands containing a Greek key motif. The structure was solved as a complex with d-galactose, providing a mode of substrate binding in detail. The d-galactose molecule was found bound in the active site pocket on the C-terminal side of the central beta-barrel of the catalytic domain. The d-galactose molecule consisted of a mixture of two anomers present in a ratio equal to their natural abundance. Structural comparisons of rice alpha-galactosidase with chicken alpha-N-acetylgalactosaminidase provided further understanding of the substrate recognition mechanism in these enzymes.  相似文献   
99.
CD44 is an adhesion molecule that serves as a cell surface receptor for several extracellular matrix components, including hyaluronan (HA). The proteolytic cleavage of CD44 from the cell surface plays a critical role in the migration of tumor cells. Although this cleavage can be induced by certain stimuli such as phorbol ester and anti-CD44 antibodies in vitro, the physiological inducer of CD44 cleavage in vivo is unknown. Here, we demonstrate that HA oligosaccharides of a specific size range induce CD44 cleavage from tumor cells. Fragmented HA containing 6-mers to 14-mers enhanced CD44 cleavage dose-dependently by interacting with CD44, whereas a large polymer HA failed to enhance CD44 cleavage, although it bound to CD44. Examination using uniformly sized HA oligosaccharides revealed that HAs smaller than 36 kDa significantly enhanced CD44 cleavage. In particular, the 6.9-kDa HA (36-mers) not only enhanced CD44 cleavage but also promoted tumor cell motility, which was completely inhibited by an anti-CD44 monoclonal antibody. These results raise the possibility that small HA oligosaccharides, which are known to occur in various tumor tissues, promote tumor invasion by enhancing the tumor cell motility that may be driven by CD44 cleavage.  相似文献   
100.
The kinetics of the association between cytochrome P450 (P450) and microsomal epoxide hydrolase (mEH) was studied by means of resonant mirror based on the principle of surface plasmon resonance. The dissociation equilibrium constants (K(D)) for the affinity of P450 enzymes for mEH were estimated by resonant mirror using an optical biosensor cell covalently bound to rat mEH. Comparable K(D) values were obtained for CYP1A1 and 2B1, and these were greater by one order of magnitude than that for the CYP2C11. To clarify the influences of P450 enzymes on the catalytic activity of mEH, the hydrolyzing activity for styrene oxide and benzo(a)pyrene-7,8-oxide [B(a)P-oxide] was analyzed in the presence or absence of P450s. Styrene oxide hydrolysis was activated by all P450s including the CYP1A, 2B, 2C, and 3A subfamilies. In agreement with the association affinity determined by resonant mirror, CYP2C11 tends to have enhanced activity for styrene oxide hydrolysis. On the other hand, B(a)P-oxide hydrolysis was enhanced by only CYP2C11 while CYP1A1 and CYP2B1 had no effect. These results suggest that (1) many P450 enzymes associate nonspecifically with mEH, (2) the CYP2C11 plays a greater role in the association/activation of mEH and (3) the P450-mediated activation of mEH depends upon the substrate of mEH.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号