首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1906篇
  免费   90篇
  国内免费   1篇
  2023年   6篇
  2022年   13篇
  2021年   26篇
  2020年   16篇
  2019年   26篇
  2018年   31篇
  2017年   21篇
  2016年   43篇
  2015年   51篇
  2014年   72篇
  2013年   142篇
  2012年   135篇
  2011年   125篇
  2010年   84篇
  2009年   66篇
  2008年   142篇
  2007年   118篇
  2006年   105篇
  2005年   138篇
  2004年   125篇
  2003年   129篇
  2002年   114篇
  2001年   14篇
  2000年   21篇
  1999年   15篇
  1998年   26篇
  1997年   26篇
  1996年   20篇
  1995年   14篇
  1994年   16篇
  1993年   7篇
  1992年   13篇
  1991年   13篇
  1990年   12篇
  1989年   8篇
  1988年   6篇
  1987年   7篇
  1986年   3篇
  1985年   7篇
  1984年   7篇
  1983年   6篇
  1982年   5篇
  1981年   5篇
  1980年   2篇
  1979年   3篇
  1978年   3篇
  1975年   2篇
  1973年   2篇
  1970年   2篇
  1968年   3篇
排序方式: 共有1997条查询结果,搜索用时 156 毫秒
991.
992.
The first step in the development of the Drosophila optic medullar primordia is the expansion of symmetrically dividing neuroepithelial cells (NEs); this step is then followed by the appearance of asymmetrically dividing neuroblasts (NBs). However, the mechanisms responsible for the change from NEs to NBs remain unclear. Here, we performed detailed analyses demonstrating that individual NEs are converted into NBs. We also showed that this transition occurs during an elongated G1 phase. During this G1 phase, the morphological features and gene expressions of each columnar NE changed dynamically. Once the NE-to-NB transition was completed, the former NE changed its cell-cycling behavior, commencing asymmetric division. We also found that Notch signaling pathway was activated just before the transition and was rapidly downregulated. Furthermore, the clonal loss of the Notch wild copy in the NE region near the medial edge caused the ectopic accumulation of Delta, leading to the precocious onset of transition. Taken together, these findings indicate that the activation of Notch signaling during a finite window coordinates the proper timing of the NE-to-NB transition.  相似文献   
993.
Determining the mobile signal used by plants to defend against biotic and abiotic stresses has proved elusive, but jasmonic acid (JA) and its derivatives appear to be involved. Using deuterium-labeled analogs, we investigated the distal transport of JA and jasmonoyl-isoleucine (JA-Ile) in response to leaf wounding in tobacco (Nicotiana tabacum) and tomato (Solanum lycopersicum) plants. We recovered [(2)H(2)-2]JA ([(2)H(2)]JA) and [(2)H(3)-12]JA-Ile ([(2)H(3)]JA-Ile) in distal leaves of N. tabacum and S. lycopersicum after treating wounded leaves with [(2)H(2)]JA or [(2)H(3)]JA-Ile. We found that JA-Ile had a greater mobility than JA, despite its lower polarity, and that application of exogenous JA-Ile to wounded leaves of N. tabacum led to a higher accumulation of JA and JA-Ile in distal leaves compared with wounded control plants. We also found that exudates from the stem of S. lycopersicum plants with damaged leaflets contained JA and JA-Ile at higher levels than in an undamaged plant, and a significant difference in the levels of JA-Ile was observed 30 min after wounding. Based on these results, it was found that JA-Ile is a transportable compound, which suggests that JA-Ile is a signaling cue involved in the resistance to biotic and abiotic stresses in plants.  相似文献   
994.
995.
γδ T cells are considered to be innate lymphocytes that play an important role in host defense against tumors and infections. We recently reported that IL-18 markedly amplified γδ T cell responses to zoledronate (ZOL)/IL-2. In an extension of this finding, we analyzed the mechanism underlying the IL-18-mediated expansion of γδ T cells. After incubation of PBMCs with ZOL/IL-2/IL-18, the majority of the cells expressed γδ TCR, and the rest mostly exhibited CD56(bright)CD11c(+) under the conditions used in this study. CD56(bright)CD11c(+) cells were derived from a culture of CD56(int)CD11c(+) cells and CD14(+) cells in the presence of IL-2 and IL-18 without the addition of ZOL. They expressed IL-18Rs, HLA-DR, CD25, CD80, CD83, CD86, and CD11a/CD18. In addition, they produced IFN-γ, TNF-α, but not IL-12, when treated with IL-2/IL-18, and they exerted cytotoxicity against K562 cells, thus exhibiting characteristics of both NK cells and dendritic cells. Incubation of purified γδ T cells with CD56(bright)CD11c(+) cells in the presence of ZOL/IL-2/IL-18 resulted in the formation of massive cell clusters and led to the marked expansion of γδ T cells. However, both conventional CD56(-/int)CD11c(high) dendritic cells induced by GM-CSF/IL-4 and CD56(+)CD11c(-) NK cells failed to support the expansion of γδ T cells. These results strongly suggest that CD56(bright)CD11c(+) cells play a key role in the IL-18-mediated proliferation of γδ T cells.  相似文献   
996.
Zona occludens (ZO) proteins are molecular scaffolds localized to cell junctions, which regulate epithelial integrity in mammals. Using newly generated null alleles, we demonstrate that polychaetoid (pyd), the unique Drosophila melanogaster ZO homologue, regulates accumulation of adherens junction-localized receptors, such as Notch, although it is dispensable for epithelial polarization. Pyd positively regulates Notch signaling during sensory organ development but acts negatively on Notch to restrict the ovary germline stem cell niche. In both contexts, we identify a core antagonistic interaction between Pyd and the WW domain E3 ubiquitin ligase Su(dx). Pyd binds Su(dx) directly, in part through a noncanonical WW-binding motif. Pyd also restricts epithelial wing cell numbers to control adult wing shape, a function associated with the FERM protein Expanded and independent of Su(dx). As both Su(dx) and Expanded regulate trafficking, we propose that a conserved role of ZO proteins is to coordinate receptor trafficking and signaling with junctional organization.  相似文献   
997.
998.
Recently, many studies have reported that polyamines play a role in bacterial cell-to-cell signaling processes. The present study describes a novel putrescine importer required for induction of type 1 pili-driven surface motility. The surface motility of the Escherichia coli ΔspeAB ΔspeC ΔpotABCD strain, which cannot produce putrescine and cannot import spermidine from the medium, was induced by extracellular putrescine. Introduction of the gene deletions for known polyamine importers (ΔpotE, ΔpotFGHI, and ΔpuuP) or a putative polyamine importer (ΔydcSTUV) into the ΔspeAB ΔspeC ΔpotABCD strain did not affect putrescine-induced surface motility. The deletion of yeeF, an annotated putative putrescine importer, in the ΔspeAB ΔspeC ΔpotABCD ΔydcSTUV strain abolished surface motility in putrescine-supplemented medium. Complementation of yeeF by a plasmid vector restored surface motility. The surface motility observed in the present study was abolished by the deletion of fimA, suggesting that the surface motility is type 1 pili-driven. A transport assay using the yeeF(+) or ΔyeeF strains revealed that YeeF is a novel putrescine importer. The K(m) of YeeF (155 μM) is 40 to 300 times higher than that of other importers reported previously. On the other hand, the V(max) of YeeF (9.3 nmol/min/mg) is comparable to that of PotABCD, PotFGHI, and PuuP. The low affinity of YeeF for putrescine may allow E. coli to sense the cell density depending on the concentration of extracellular putrescine.  相似文献   
999.
Control of the growth and differentiation of neural stem cells is fundamental to brain development and is largely dependent on the Notch signaling pathway. The mechanism by which the activity of Notch is regulated during brain development has remained unclear, however. Fbxw7 (also known as Fbw7, SEL-10, hCdc4, or hAgo) is the F-box protein subunit of an Skp1-Cul1-F-box protein (SCF)-type ubiquitin ligase complex that plays a central role in the degradation of Notch family members. We now show that mice with brain-specific deletion of Fbxw7 (Nestin-Cre/Fbxw7(F/F) mice) die shortly after birth with morphological abnormalities of the brain and the absence of suckling behavior. The maintenance of neural stem cells was sustained in association with the accumulation of Notch1 and Notch3, as well as up-regulation of Notch target genes in the mutant mice. Astrogenesis was also enhanced in the mutant mice in vivo, and the differentiation of neural progenitor cells was skewed toward astrocytes rather than neurons in vitro, with the latter effect being reversed by treatment of the cells with a pharmacological inhibitor of the Notch signaling pathway. Our results thus implicate Fbxw7 as a key regulator of the maintenance and differentiation of neural stem cells in the brain.  相似文献   
1000.
The piggyBac transposon has recently attracted attention as a tool for transgene integration in mammalian cells. However, previous studies involving piggyBac investigated only transposition from circular DNA, although some linear DNA vectors are used to transfect mammalian cells. In this study, we compared the transposition efficiency of piggyBac between linear and circular DNA. Colony counting assay, luciferase assay, and plasmid rescue assay showed that piggyBac transposon can transpose from linear DNA, but its efficiency is lower than the transposition efficiency from circular DNA. These results suggest that circular DNA is more suitable as donor vectors of piggyBac than linear DNA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号