首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5988篇
  免费   398篇
  国内免费   3篇
  2021年   40篇
  2020年   27篇
  2019年   34篇
  2018年   57篇
  2017年   45篇
  2016年   83篇
  2015年   134篇
  2014年   143篇
  2013年   461篇
  2012年   277篇
  2011年   255篇
  2010年   186篇
  2009年   173篇
  2008年   295篇
  2007年   304篇
  2006年   318篇
  2005年   293篇
  2004年   330篇
  2003年   303篇
  2002年   290篇
  2001年   130篇
  2000年   143篇
  1999年   126篇
  1998年   84篇
  1997年   81篇
  1996年   65篇
  1995年   85篇
  1994年   75篇
  1993年   96篇
  1992年   116篇
  1991年   100篇
  1990年   77篇
  1989年   97篇
  1988年   91篇
  1987年   73篇
  1986年   61篇
  1985年   74篇
  1984年   72篇
  1983年   57篇
  1982年   65篇
  1981年   49篇
  1980年   43篇
  1979年   52篇
  1978年   42篇
  1977年   58篇
  1976年   36篇
  1975年   34篇
  1974年   36篇
  1973年   33篇
  1969年   29篇
排序方式: 共有6389条查询结果,搜索用时 15 毫秒
981.
By estimating the 14C content of many acetic acid samples prepared from vinegars, Worcester sauces, ketchups and pickles with a liquid scintillation counter, it was proved that synthetic acetic acid mixed with biogenic one could be discriminated with considerable accuracy. It was also found that several products obtained from the open market contained synthetic acetic acid though they were represented to have been prepared exclusively from fermentation vinegar.  相似文献   
982.
The proliferation cycle of the microbody was studied in the primitive red alga Cyanidioschyzon merolae, which contains one microbody per cell. Cells were synchronized with a dark/light cycle, and the morphology of the microbody and its interaction with other organelles were observed three-dimensionally by fluorescence microscopy, transmission electron microscopy, and computer-assisted three-dimensional reconstruction of serial thin sections. The microbody in interphase cells is a sphere of 0.3 μm in diameter without a core. In M-phase, the microbody passes through a series of irregular shapes, in the order rod, worm, branched, H-shaped and dumbbell, and symmetric fission occurs just before cytokinesis. The microbody duplicates its volume in M-phase and three-dimensional quantitative analysis revealed that its surface area increases before its volume does. The microbody touches the mitochondrion and the chloroplast throughout its proliferation cycle, except briefly in interphase cells, winding around the divisional plane of the mitochondrion at one phase. Immunocytochemical labeling of catalase as a marker of matrix proteins of the microbody revealed that the duplication of catalase occurs in tandem with the volume increase. While no specific apparatus was identified in the microbody divisional areas, we identified an electron-dense apparatus about 30–50 nm in diameter between the microbody and the mitochondrion that may play a role in segregating the daughter microbodies. These results are the first characterization to show the morphological changes of one microbody in a one-microbody alga without proliferation-inducing substrates, which have been used in many studies, and clearly show that two daughter microbodies arise by binary fission of the pre-existing microbody. Received: 11 November 1998 / Accepted: 22 December 1998  相似文献   
983.
Femtosecond laser optoporation is a powerful technique to introduce membrane-impermeable molecules, such as DNA plasmids, into targeted cells in culture, yet only a narrow range of laser regimes have been explored. In addition, the dynamics of the laser-produced membrane pores and the effect of pore behavior on cell viability and transfection efficiency remain poorly elucidated. We studied optoporation in cultured cells using tightly focused femtosecond laser pulses in two irradiation regimes: millions of low-energy pulses and two higher-energy pulses. We quantified the pore radius and resealing time as a function of incident laser energy and determined cell viability and transfection efficiency for both irradiation regimes. These data showed that pore size was the governing factor in cell viability, independently of the laser irradiation regime. For viable cells, larger pores resealed more quickly than smaller pores, ruling out a passive resealing mechanism. Based on the pore size and resealing time, we predict that few DNA plasmids enter the cell via diffusion, suggesting an alternative mechanism for cell transfection. Indeed, we observed fluorescently labeled DNA plasmid adhering to the irradiated patch of the cell membrane, suggesting that plasmids may enter the cell by adhering to the membrane and then being translocated.  相似文献   
984.
The occurrence of a new brassinosteroid of (22S,24R)-3β,22-dihydroxy-5α-ergostan-6-one, named cathasterone, was demonstrated by a GC-MS analysis in cultured cells of Catharanthus roseus. Its endogenous level was in the range of 2–4 ng/g fw, similar to those of brassinolide and castasterone. A feeding experiment with a deuterium-labeled substrate revealed that cathasterone was converted to teasterone and typhasterol. This is the first report of the natural occurrence of cathasterone as a brassinosteroid being the biosynthetic precursor of teasterone.  相似文献   
985.
Potosensitized formation of 8-hydroxyguanine in DNA by riboflavin was observed. A reaction mechanism involving guanine radical cation and hydration reaction was proposed. This hypothesis was confirmed by the incorporation of [18O]-atom within guanine moiety in isotopic experiments using [18O]-H2O. Photosensitized formation of oh8Gua by riboflavin was also observed in cellular DNA.  相似文献   
986.
During meiotic prophase I, proteinaceous structures called synaptonemal complexes (SCs) connect homologous chromosomes along their lengths via polymeric arrays of transverse filaments (TFs). Thus, control of TF polymerization is central to SC formation. Using budding yeast, we show that efficiency of TF polymerization closely correlates with the extent of SUMO conjugation to Ecm11, a component of SCs. HyperSUMOylation of Ecm11 leads to highly aggregative TFs, causing frequent assembly of extrachromosomal structures. In contrast, hypoSUMOylation leads to discontinuous, fragmented SCs, indicative of defective TF polymerization. We further show that the N terminus of the yeast TF, Zip1, serves as an activator for Ecm11 SUMOylation. Coexpression of the Zip1 N terminus and Gmc2, a binding partner of Ecm11, is sufficient to induce robust polySUMOylation of Ecm11 in nonmeiotic cells. Because TF assembly is mediated through N-terminal head-to-head associations, our results suggest that mutual activation between TF assembly and Ecm11 polySUMOylation acts as a positive feedback loop that underpins SC assembly.  相似文献   
987.
Oryzacystatin (oryzacystatin-I) is a proteinaceous cysteine proteinase inhibitor (cystatin) in rice seeds and is the first well defined cystatin of plant origin. In this study we isolated cDNA clones for a new type of cystatin (oryzacystatin-II) in rice seeds by screening with the oryzacystatin-I cDNA probe. The newly isolated cDNA clone encodes 107 amino acid residues whose sequence is similar to that of oryzacystatin-I (approximately 55% of identity). These oryzacystatins have no disulfide bonds, and so could be classified as family-I cystatins; however, the amino acid sequences resemble those of family-II members more than family-I members. Oryzacystatin-I and -II are remarkably distinct in two respects: 1) their specificities against cysteine proteinases; and 2) the expression patterns of their mRNAs in the ripening stage of rice seeds. Oryzacystatin-I inhibits papain more effectively (Ki 3.0 x 10(-8) M) than cathepsin H (Ki 0.79 x 10(-6) M), while oryzacystatin-II inhibits cathepsin H (Ki 1.0 x 10(-8) M) better than papain (Ki 0.83 x 10(-6) M). The mRNA for oryzacystatin-I is expressed maximally at 2 weeks after flowering and is not detected in mature seeds, whereas the mRNA for oryzacystatin-II is constantly expressed throughout the maturation stages and is clearly detected in mature seeds. Western blotting analysis using antibody to oryzacystatin-II showed that, as is the case with oryzacystatin-I, oryzacystatin-II occurs in mature rice seeds. Thus, these two oryzacystatin species are believed to be involved in the regulation of proteolysis caused by different proteinases.  相似文献   
988.
The formation of protein-carbohydrate yolk in the statoblast of a fresh-water bryozoan, Pectinatella gelatinosa, was studied by electron microscopy. Two types (I and II) of yolk cells were distinguished. The type I yolk cells are mononucleate and comprise a large majority of the yolk cells. The type II yolk cells are small in number; they become multinucleate by fusion of cells at an early stage of vitellogenesis. In both types of yolk cells, electron-dense granules (dense bodies) are formed in Golgi or condensing vacuoles, which are then called yolk granules. For the formation of yolk granules, the following processes are considered: 1. Yolk protein is synthesized in the rough-surfaced endoplasmic reticulum (RER) of the yolk cells. 2. The synthesized protein condenses in the cisternal space of the RER and is packaged into small oval swellings, which are then released from the RER as small vesicles (Golgi vesicles, 300-600 A in diameter). 3. The small vesicles fuse with one another to form condensing vacuoles, or with pre-existing growing yolk granules. 4. In the matrix of the condensing vacuoles or growing yolk granules, electron-dense fibers are fabricated and then arranged in a paracrystalline pattern to form the dense body. 5. After the dense body reaches its full size, excess membrane is removed and eventually the yolk granules come to mature. Toward the end of vitellogenesis of the yolk cells, the cytoplasmic organelles are ingested by autophagosomes derived from multivesicular bodies and disappear.  相似文献   
989.
Chaperonin (Cpn) is one of the molecular chaperones. Cpn10 is a co-factor of Cpn60, which regulates Cpn60-mediated protein folding. It is known that Cpn10 is located in mitochondria and chloroplasts in plant cells. The Escherichia coli homologue of Cpn10 is called GroES. A cDNA for the Cpn10 homologue was isolated from Arabidopsis thaliana by functional complementation of the E. coli groES mutant. The cDNA was 647 bp long and encoded a polypeptide of 98 amino acids. The deduced amino acid sequence showed approximately 50% identity to mammalian mitochondrial Cpn10s and 30% identity to GroES. A Northern blot analysis revealed that the mRNA for the Cpn10 homologue was expressed uniformly in various organs and was markedly induced by heat-shock treatment. The Cpn10 homologue was constitutively expressed in transgenic tobaccos. Immunogold and immunoblot analyses following the subcellular fractionation of leaves from transgenic tobaccos revealed that the Cpn10 homologue was localized in mitochondria and accumulated at a high level in transgenic tobaccos.  相似文献   
990.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号