首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4323篇
  免费   204篇
  国内免费   2篇
  4529篇
  2022年   13篇
  2021年   21篇
  2019年   23篇
  2018年   46篇
  2017年   29篇
  2016年   65篇
  2015年   101篇
  2014年   110篇
  2013年   370篇
  2012年   183篇
  2011年   167篇
  2010年   123篇
  2009年   109篇
  2008年   221篇
  2007年   237篇
  2006年   240篇
  2005年   216篇
  2004年   248篇
  2003年   260篇
  2002年   242篇
  2001年   75篇
  2000年   68篇
  1999年   89篇
  1998年   74篇
  1997年   65篇
  1996年   44篇
  1995年   68篇
  1994年   59篇
  1993年   69篇
  1992年   72篇
  1991年   56篇
  1990年   51篇
  1989年   62篇
  1988年   41篇
  1987年   43篇
  1986年   39篇
  1985年   47篇
  1984年   60篇
  1983年   40篇
  1982年   46篇
  1981年   35篇
  1980年   35篇
  1979年   28篇
  1978年   28篇
  1977年   33篇
  1976年   20篇
  1975年   29篇
  1974年   21篇
  1973年   26篇
  1972年   13篇
排序方式: 共有4529条查询结果,搜索用时 15 毫秒
61.
Cerulenin, an antifungal antibiotic produced by Cephalosporium caerulens, is a potent inhibitor of fatty acid synthase in various organisms, including Saccharomyces cerevisiae. The antibiotic inhibits the enzyme by binding covalently to the active center cysteine of the condensing enzyme domain. We isolated 12 cerulenin-resistant mutants of S. cerevisiae following treatment with ethyl methanesulfonate. The mechanism of cerulenin resistance in one of the mutants, KNCR-1, was studied. Growth of the mutant was over 20 times more resistant to cerulenin than that of the wild-type strain. Tetrad analysis suggested that all mutants mapped at the same locus, FAS2, the gene encoding the subunit of the fatty acid synthase. The isolated fatty acid synthase, purified from the mutant KNCR-1, was highly resistant to cerulenin. The cerulenin concentration causing 50% inhibition (IC50) of the enzyme activity was measured to be 400 M, whereas the IC50 value was 15 M for the enzyme isolated from the wild-type strain, indicating a 30-fold increase in resistance to cerulenin. The FAS2 gene was cloned from the mutant. Sequence replacement experiments suggested that an 0.8 kb EcoRV-HindIII fragment closely correlated with cerulenin resistance. Sequence analysis of this region revealed that the GGT codon encoding Gly-1257 of the FAS2 gene was altered to AGT in the mutant, resulting in the codon for Ser. Furthermore, a recombinant FAS2 gene, in which the 0.8 Kb EcoRV-HindIII fragment of the wild-type FAS2 gene was replaced with the same region from the mutant, when introduced into FAS2-defective S. cerevisiae complemented the FAS2 pheno-type and showed cerulenin resistance. These data indicate that one amino acid substitution (Gly Ser) in the subunit of fatty acid synthase is responsible for the cerulenin resistance of the mutant KNCR-1.  相似文献   
62.
Recent advances suggest that neurons of the anterior intraparietal area play a critical role in the visual guidance of hand action. The parietal cortex appears to process in-coming binocular visual signals of the three-dimensional features of objects and matches these signals with the motor signals, which come from the ventral premotor cortex, that will be required for hand manipulation of the object.  相似文献   
63.
The importance of the 2′-hydroxyl and 2-amino groups of guanosine residues for the catalytic efficiency of a hammerhead ribozyme has been investigated. The three guanosines in the central core of a hammerhead ribozyme were replaced by deoxyinosine, inosine, and deoxyguanosine, and ribozymes containing these analogues were chemically synthesized. Most of the modified ribozymes are drastically descreased in their cleavage efficiency. However. deletion of the 2-amino group at G8 (replacement with inosine, deoxyguanosine, deoxyinosine) caused little alteration in the catalytic activity relative to that obtained with the unmodified ribozyme. Whereas, deletion of the 2′-amino group at G12 and G5 (replacement with inosine, deoxyinosine, and deoxyguanosine) resulted in ribozymes with drastic decrease in the catalytic activity relative to that obtained with the unmodified ribozyme. In contrast, two uridine residues, U7 and U4, in the ribozyne sequence were replaced by deoxyuridine (dU). The dU4 complex resulted in a decrease in the catalytic rate, with relative cleavage activity that ws about half that observed for the native complex. By comparison, the dU7 complex exhibited a relative cleavage activity within 3.3-fold of that observed with native ribozyme/substrate complex. This result suggests that the 2′-hydroxyl group at U 7 is not essential for activity.

The importance of the 2′-hydroxyl, and 2-amino groups of guanosine residues for the catalytic efficiency of a hammerhead roibozyme has been investigated. Most of the modified rybozymes are drastically decreased in their cleavage efficiency. However, deletion of the 2-amino group at G8 or deletion of the 2′-hydroxyl group at G12 caused little alteration in the catalytic activity relative to that obtained with the unmodified ribozyme. In contrast, two uridine residues, U7 and U4, in the ribozyme sequence were replaced by deoxyuridine (dU). The U4 complex resulted in a decrease in the catalytic rate, with relative cleavage activity that was about half that observed for the native complex.  相似文献   

64.
A novel complex mutation with the presence of both deletion and insertion in very close proximity in the same region was detected in exon 8 of the LDL receptor gene from two apparently unrelated Japanese families with familial hypercholesterolemia (FH). In this mutant LDL receptor gene, the nine bases from nucleotide (nt) 1115 to nt 1123 (AGGGTGGCT) were replaced by six different bases (CACTGA), and consequently the four amino acids from codon 351 to 354, Glu-Gly-Gly-Tyr, were replaced by three amino acids, Ala-Leu-Asn, in the conserved amino acid region of the growth factor repeat B of the LDL receptor. The nature of the amino acid substitution and data on the families suggest that this mutation is very likely to affect the LDL receptor function and cause FH. The generation of this complex mutation can be explained by the simultaneous occurrence of deletion and insertion through the formation of a hairpin-loop structure mediated by inverted repeat sequences. Thus this mutation supports the hypothesis that inverted repeat sequences influence the stability of a given gene and promote human gene mutations.  相似文献   
65.
66.
Benzyladenine-induced changes in the translatable mRNA population in excised cucumber cotyledons were studied. Poly (A)+ RNA was prepared from etiolated cotyledons incubated with or without benzyladenine (BA) for various periods in the dark. Using nonequilibrium pH gradient electrophoresis-SDS polyacrylamide gel electrophoresis and isoelectric focusing-SDS polyacrylamide gel electrophoresis, both basic and neutral proteins translated in vitro were separated. About 240 spots were detected and 16 of them changed within 6 h after BA application. Some spots changed quickly (within 1–2 h). Among them, three were repressed markedly  相似文献   
67.
Intrarectal inoculation of rhesus monkeys with low doses of SIVmac led to a prolonged clinical and virological latency that was not observed for high intrarectal doses or for intravenous inoculation. Animals infected intrarectally with low virus doses remained negative for serum antibody responses to SIV for at least one year even though they readily transferred SIV to naive recipients via transfusion of whole blood.  相似文献   
68.
We report here the first cloning of a chalcone flavonone isomerase gene (CHI) from maize. Northern blot experiments indicate that the maize CHI gene (ZmCHI1) is regulated in the pericarp by the P gene, a myb homologue. The ZmCHI1 gene encodes a 24.3 kDa product 55% and 58% identical to CHI-A and CHI-B from Petunia, respectively. This maize CHI gene has four exons and an intron-exon structure identical to the CHI-B gene of Petunia hybrida. RFLP mapping data indicate that some inbred lines contain two additional CHI-homologous sequences, suggesting an organization more complex than that found in Petunia or bean. The possibility that the additional CHI-homologous sequences are responsible for the lack of CHI mutants in maize will be discussed.  相似文献   
69.
70.
The antitumor activity of peritoneal exudate cells (PEC) induced by murine interleukin-5 (mIL-5) was examined using Meth-A sarcoma cells transplanted into the peritoneal cavity of mice. Although in vitro treatment of Meth-A sarcoma cells with mIL-5 did not result in inhibition of their growth, treatment of mice intraperitoneally with mIL-5 (1 g/day) from day –5 to +5 (tumor cells were inoculated on day 0) led to a significant increase in survival or even rejection of tumor cells. This antitumor effect depended on the dose of mIL-5. Interestingly, there was identical therapeutic activity when the protocol of days –10 to –1 was used as opposed to –5 to +5. In addition, post-treatment with mIL-5 from day +1 to +10 was ineffective. This suggests that the therapeutic activity of IL-5 is largely prophylactic. Under the former condition, the number of PEC was found to increase over 50-fold when compared to levels in control mice. Moreover, the antitumor effect of mIL-5 was completely abolished by subcutaneous injection of anti-mIL-5 monoclonal antibodies. The treatment of mice injected intraperitoneally with human IL-2 also resulted in an increase in survival. Winn assay experiments using PEC recovered from mIL-5-treated mice (1g/day, from day –10 to –1) revealed that these PEC could mediate antitumor activity against Meth-A sarcoma cells. Furthermore, when the cured mice were re-injected with Meth-A sarcoma cells or syngeneic MOPC 104E cells, they could reject Meth-A sarcoma cells but not MOPC 104E cells, indicating that immune memory had been generated. These results suggest that IL-5 augumented the PEC tumoricidal activity but we have no indication that the tumoricidal activity was mediated through a mIL-5-dependent mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号