首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1055篇
  免费   61篇
  国内免费   2篇
  2023年   1篇
  2022年   8篇
  2021年   11篇
  2020年   7篇
  2019年   7篇
  2018年   21篇
  2017年   16篇
  2016年   25篇
  2015年   25篇
  2014年   33篇
  2013年   46篇
  2012年   79篇
  2011年   68篇
  2010年   49篇
  2009年   41篇
  2008年   70篇
  2007年   89篇
  2006年   73篇
  2005年   58篇
  2004年   76篇
  2003年   72篇
  2002年   75篇
  2001年   15篇
  2000年   6篇
  1999年   15篇
  1998年   18篇
  1997年   14篇
  1996年   9篇
  1995年   11篇
  1994年   9篇
  1993年   11篇
  1992年   9篇
  1991年   4篇
  1990年   5篇
  1988年   4篇
  1987年   9篇
  1986年   6篇
  1985年   5篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1973年   2篇
  1972年   2篇
排序方式: 共有1118条查询结果,搜索用时 546 毫秒
31.
Here we attempted to clarify telomere metabolism in parental cells and their derived clonal human induced pluripotent stem cells (iPSCs) at different passages using quantitative fluorescence in situ hybridization (Q-FISH). Our methodology involved estimation of the individual telomere lengths of chromosomal arms in individual cells within each clone in relation to telomere fluorescence units (TFUs) determined by Q-FISH. TFUs were very variable within the same metaphase spread and within the same cell. TFUs of the established iPSCs derived from human amnion (hAM933 iPSCs), expressed as mean values of the median TFUs of 20 karyotypes, were significantly longer than those of the parental cells, although the telomere extension rates varied quite significantly among the clones. Twenty metaphase spreads from hAM933 iPSCs demonstrated no chromosomal instability. The iPSCs established from fetal lung fibroblasts (MRC-5) did not exhibit telomere shortening and chromosomal instability as the number of passages increased. However, the telomeres of other iPSCs derived from MRC-5 became shorter as the number of passages increased, and one (5%) of 20 metaphase spreads showed chromosomal abnormalities including X trisomy at an early stage and all 20 showed abnormalities including X and 12 trisomies at the late stage.  相似文献   
32.
Vascular network formation is a key therapeutic event in regenerative medicine because it is essential for mitigating or ameliorating ischemic conditions implicated in various diseases and repair of tissues and organs. In this study, we induced human induced pluripotent stem cells (hiPSCs) to differentiate into heterogeneous cell populations which have abilities to form vascular vessel-like structures by recapitulating the embryonic process of vasculogenesis in vitro. These cell populations, named cardiovascular blast populations (CBPs) in this report, primarily consisted of CD31+ and CD90+ cells.  相似文献   
33.
Nanosecond pulsed electric fields (nsPEFs) have recently gained attention as effective cancer therapy owing to their potency for cell death induction. Previous studies have shown that apoptosis is a predominant mode of nsPEF-induced cell death in several cell lines, such as Jurkat cells. In this study, we analyzed molecular mechanisms for cell death induced by nsPEFs. When nsPEFs were applied to Jurkat cells, apoptosis was readily induced. Next, we used HeLa S3 cells and analyzed apoptotic events. Contrary to our expectation, nsPEF-exposed HeLa S3 cells exhibited no molecular signs of apoptosis execution. Instead, nsPEFs induced the formation of poly(ADP-ribose) (PAR), a hallmark of necrosis. PAR formation occurred concurrently with a decrease in cell viability, supporting implications of nsPEF-induced PAR formation for cell death. Necrotic PAR formation is known to be catalyzed by poly(ADP-ribose) polymerase-1 (PARP-1), and PARP-1 in apoptotic cells is inactivated by caspase-mediated proteolysis. Consistently, we observed intact and cleaved forms of PARP-1 in nsPEF-exposed and UV-irradiated cells, respectively. Taken together, nsPEFs induce two distinct modes of cell death in a cell type-specific manner, and HeLa S3 cells show PAR-associated non-apoptotic cell death in response to nsPEFs.  相似文献   
34.
Gram negative bacteria have lipopolysaccharides (LPS) that are critical for their survival. LPS molecules are composed of antigenic exopolysaccharide chains (O antigens). We are interested in discovering the enzymes involved in the biosynthesis of O antigens in Pseudomonas aeruginosa. The common polysaccharide antigen contains α-linked d-rhamnose residues. We have now synthesized GDP-d-rhamnose by a convenient synthesis in aqueous solution, and have shown that it can be used without extensive purification as the donor substrate for d-rhamnosyltransferase (WbpZ) from the P. aeruginosa strain PAO1. The availability of this nucleotide sugar preparation allows for characterization of d-rhamnosyltransferases.  相似文献   
35.
A novel 7,6 fused bicyclic scaffold, pyrimido[4,5-b]azepine was designed to fit into the ATP binding site of the HER2/EGFR proteins. The synthesis of this scaffold was accomplished by an intramolecular Claisen-type condensation. As the results of optimization lead us to 4-anilino and 6-functional groups, we discovered 6-substituted amide derivative 19b, which has a 1-benzothiophen-4-yloxy group attached to the 4-anilino group. An X-ray co-crystal structure of 19b with EGFR demonstrated that the N-1 and N-3 nitrogens of the pyrimido[4,5-b]azepine scaffold make hydrogen-bonding interactions with the main chain NH of Met793 and the side chain of Thr854 via a water-mediated hydrogen bond network, respectively. In addition, the NH proton at the 9-position makes an additional hydrogen bond with the carbonyl group of Met793, as we expected. Compound 19b revealed potent HER2/EGFR kinase (IC50: 24/36 nM) and BT474 cell growth (GI50: 18 nM) inhibitory activities based on its pseudo-irreversible (PI) profile.  相似文献   
36.
With the aim to address an undesired cardiac issue observed with our related compound in the recently disclosed novel series of renin inhibitors, further chemical modifications of this series were performed. Extensive structure–activity relationships studies as well as in vivo cardiac studies using the electrophysiology rat model led to the discovery of clinical candidate trans-adamantan-1-ol analogue 56 (DS-8108b) as a potent renin inhibitor with reduced potential cardiac risk. Oral administration of single doses of 3 and 10 mg/kg of 56 in cynomolgus monkeys pre-treated with furosemide led to significant reduction of mean arterial blood pressure for more than 12 h.  相似文献   
37.
A monohalomethane-producing enzyme, S-adenosyl-L-methionine-dependent halide ion methyltransferase (EC 2.1.1.-) was purified from the marine microalga Pavlova pinguis by two anion exchange, hydroxyapatite and gel filtration chromatographies. The methyltransferase was a monomeric molecule having a molecular weight of 29,000. The enzyme had an isoelectric point at 5.3, and was optimally active at pH 8.0. The Km for iodide and SAM were 12 mM and 12 μM, respectively, which were measured using a partially purified enzyme. Various metal ions had no significant effect on methyl iodide production, suggesting that the enzyme does not require metal ions. The enzyme reaction strictly depended on SAM as a methyl donor, and the enzyme catalyzed methylation of the I-,Br-, and Cl- to corresponding monohalomethanes and of bisulfide to methyl mercaptan.  相似文献   
38.
39.
40.
Human CD46 is a receptor for the M protein of group A streptococcus (GAS). The emm1 GAS strain GAS472 was isolated from a patient suffering from streptococcal toxic shock‐like syndrome. Human CD46‐expressing transgenic (Tg) mice developed necrotizing fasciitis associated with osteoclast‐mediated progressive and severe bone destruction in the hind paws 3 days after subcutaneous infection with 5 × 105 colony‐forming units of GAS472. GAS472 infection induced expression of the receptor activator of nuclear factor‐κB ligand (RANKL) while concomitantly reducing osteoprotegerin expression in the hind limb bones of CD46 Tg mice. Micro‐computed tomography analysis of the bones suggested that GAS472 infection induced local bone erosion and systemic bone loss in CD46 Tg mice. Because treatment with monoclonal antibodies (mAbs) against mouse CD4+ and CD8+ T lymphocytes did not inhibit osteoclastogenesis, T lymphocyte‐derived RANKL was not considered a major contributor to massive bone loss during GAS472 infection. However, immunohistochemical analysis of the hind limb bones showed that GAS472 infection stimulated RANKL production in various bone marrow cells, including fibroblast‐like cells. Treatment with a mAb against mouse RANKL significantly inhibited osteoclast formation and bone resorption. These data suggest that increased expression of RANKL in heterogeneous bone marrow cells provoked bone destruction during GAS infection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号