首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   995篇
  免费   62篇
  国内免费   2篇
  1059篇
  2023年   3篇
  2022年   9篇
  2021年   11篇
  2020年   7篇
  2019年   6篇
  2018年   21篇
  2017年   16篇
  2016年   25篇
  2015年   25篇
  2014年   31篇
  2013年   46篇
  2012年   76篇
  2011年   67篇
  2010年   47篇
  2009年   39篇
  2008年   68篇
  2007年   83篇
  2006年   69篇
  2005年   55篇
  2004年   75篇
  2003年   71篇
  2002年   73篇
  2001年   13篇
  2000年   5篇
  1999年   12篇
  1998年   17篇
  1997年   13篇
  1996年   7篇
  1995年   9篇
  1994年   6篇
  1993年   11篇
  1992年   8篇
  1991年   2篇
  1990年   3篇
  1988年   1篇
  1987年   6篇
  1986年   5篇
  1985年   4篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1973年   2篇
  1972年   2篇
排序方式: 共有1059条查询结果,搜索用时 15 毫秒
891.
892.
893.
Protein kinase C (PKC)delta was the first new/novel PKC isoform to be identified by the screening of mammalian cDNA libraries, based on the structural homology of its nucleotide sequences with those of classical/conventional PKC isoforms. PKC delta is expressed ubiquitously among cells and tissues. It is activated by diacylglycerol produced by receptor-mediated hydrolysis of membrane inositol phospholipids as well as by tumor-promoting phorbol ester through the binding of these compounds to the C1 region in its regulatory domain. It is also cleaved by caspase to generate a catalytically active fragment, and it is converted to an active form without proteolysis through the tyrosine phosphorylation reaction. Various lines of evidence indicate that PKC delta activated in distinct ways plays critical roles in cellular functions such as the control of growth, differentiation, and apoptosis. This article briefly summarizes the regulatory mechanisms of PKC delta activity and its functions in cell signaling.  相似文献   
894.
895.
Lipofuscin contains fluorophores, which represent a biomarker for cellular aging. Although it remains unsubstantiated clinically, experimental results support that the accumulation of lipofuscin is related to an increased risk of choroidal neovascularization due to age-related macular degeneration, a leading cause of legal blindness. Here, we report that a major lipofuscin component, A2E, activates the retinoic acid receptor (RAR). In vitro experiments using luciferase reporter assay, competitional binding assay, analysis of target genes, and chromatin immunoprecipitation (ChIP) assay strongly suggest that A2E is a bona fide ligand for RAR and induces sustained activation of RAR target genes. A2E-induced vascular endothelial growth factor (VEGF) expression in a human retinal pigment epithelial cell line (ARPE-19) and RAR antagonist blocked the up-regulation of VEGF. The conditioned medium of A2E-treated ARPE-19 cells induced tube formation in human umbilical vascular endothelial cells, which was blocked by the RAR antagonist and anti-VEGF antibody. These results suggest that A2E accumulation results in the phenotypic alteration of retinal pigment epithelial cells, predisposing the environment to choroidal neovascularization development. This is mediated through the agonistic function of A2E, at least in part. The results of this study provide a novel potential therapeutic target for this incurable condition.  相似文献   
896.
12-O-tetradecanoyl phorbol-13-acetate-induced sequence 7/interferon related development regulator 1 (Tis7/IFRD1) has been recently identified as a modifier gene in lung inflammatory disease severity in patients with cystic fibrosis (CF), based upon its capacity to regulate inflammatory activities in neutrophils. In CF patients, the F508del mutation in the Cftr gene encoding a chloride channel, the CF transmembrane conductance regulator (CFTR) in airway epithelial cells results in an exaggerated inflammatory response of these cells. At present, it is unknown whether the Tis7/IFRD1 gene product is expressed in airway epithelial cells. We therefore investigated the possibility there is an intrinsic alteration in Tis7/IFRD1 protein level in cells lacking CFTR function in tracheal homogenates of F508del-CFTR mice and in a F508del-CFTR human bronchial epithelial cell line (CFBE41o cells). When Tis7/IFRD1 protein was detectable, trachea from F508del-CFTR mice showed a reduction in the level of Tis7/IFRD1 protein compared to wild-type control littermates. A significant reduction of IFRD1 protein level was found in CFBE41o cells compared to normal bronchial epithelial cells 16HBE14o. Surprisingly, messenger RNA level of IFRD1 in CFBE41o cells was found elevated. Treating CFBE41o cells with the antioxidant glutathione rescued the IFRD1 protein level closer to control level and also reduced the pro-inflammatory cytokine IL-8 release. This work provides evidence for the first time of reduced level of IFRD1 protein in murine and human F508del-CFTR airway epithelial cell models, possibly mediated in response to oxidative stress which might contribute to the exaggerated inflammatory airway response observed in CF patients homozygous for the F508del mutation.  相似文献   
897.
ObjectiveAlmost two-thirds of patients with Sturge-Weber syndrome (SWS) have epilepsy, and half of them require surgery for it. However, it is well known that scalp electroencephalography (EEG) does not demonstrate unequivocal epileptic discharges in patients with SWS. Therefore, we analyzed interictal and ictal discharges from intracranial subdural EEG recordings in patients treated surgically for SWS to elucidate epileptogenicity in this disorder.MethodsFive intractable epileptic patients with SWS who were implanted with subdural electrodes for presurgical evaluation were enrolled in this study. We examined the following seizure parameters: seizure onset zone (SOZ), propagation speed of seizure discharges, and seizure duration by visual inspection. Additionally, power spectrogram analysis on some frequency bands at SOZ was performed from 60 s before the visually detected seizure onset using the EEG Complex Demodulation Method (CDM).ResultsWe obtained 21 seizures from five patients for evaluation, and all seizures initiated from the cortex under the leptomeningeal angioma. Most of the patients presented with motionless staring and respiratory distress as seizure symptoms. The average seizure propagation speed and duration were 3.1 ± 3.6 cm/min and 19.4 ± 33.6 min, respectively. Significant power spectrogram changes at the SOZ were detected at 10–30 Hz from 15 s before seizure onset, and at 30–80 Hz from 5 s before seizure onset.SignificanceIn patients with SWS, seizures initiate from the cortex under the leptomeningeal angioma, and seizure propagation is slow and persists for a longer period. CDM indicated beta to low gamma-ranged seizure discharges starting from shortly before the visually detected seizure onset. Our ECoG findings indicate that ischemia is a principal mechanism underlying ictogenesis and epileptogenesis in SWS.  相似文献   
898.
Highlights? Not all hepatocytes undergo cell division during liver regeneration ? Hypertrophy precedes proliferation in the regenerating liver ? Hepatocytes infrequently enter into M phase during liver regeneration ? Binuclear hepatocytes undergo cell division to generate mononuclear hepatocytes  相似文献   
899.
Physiological roles of the transsulfuration pathway have been recognized by its contribution to the synthesis of cytoprotective cysteine metabolites, such as glutathione, taurine/hypotaurine, and hydrogen sulfide (H(2)S), whereas its roles in protecting against methionine toxicity remained to be clarified. This study aimed at revealing these roles by analyzing high-methionine diet-fed transsulfuration-defective cystathionine γ-lyase-deficient (Cth(-/-)) mice. Wild-type and Cth(-/-) mice were fed a standard diet (1 × Met: 0.44%) or a high-methionine diet (3 × Met or 6 × Met), and hepatic conditions were monitored by serum biochemistry and histology. Metabolome analysis was performed for methionine derivatives using capillary electrophoresis- or liquid chromatography-mass spectrometry and sulfur-detecting gas chromatography. The 6 × Met-fed Cth(-/-) (not 1 × Met-fed Cth(-/-) or 6 × Met-fed wild type) mice displayed acute hepatitis, which was characterized by markedly elevated levels of serum alanine/aspartate aminotransferases and serum/hepatic lipid peroxidation, inflammatory cell infiltration, and hepatocyte ballooning; thereafter, they died of gastrointestinal bleeding due to coagulation factor deficiency. After 1 week on 6 × Met, blood levels of ammonia/homocysteine and hepatic levels of methanethiol/3-methylthiopropionate (a methionine transamination product/methanethiol precursor) became significantly higher in Cth(-/-) mice than in wild-type mice. Although hepatic levels of methionine sulfoxide became higher in 6 × Met-fed wild-type mice and Cth(-/-) mice, those of glutathione, taurine/hypotaurine, and H(2)S became lower and serum levels of homocysteine became much higher in 6 × Met-fed Cth(-/-) mice than in wild-type mice. Thus, transsulfuration plays a critical role in the detoxification of excessive methionine by circumventing aberrant accumulation of its toxic transamination metabolites, including ammonia, methanethiol, and 3-methylthiopropionate, in addition to synthesizing cysteine-derived antioxidants to counteract accumulated pro-oxidants such as methionine sulfoxide and homocysteine.  相似文献   
900.
The pem1/cho2 pem2/opi3 double mutant of Saccharomyces cerevisiae, which is auxotrophic for choline because of the deficiency in methylation activities of phosphatidylethanolamine, grew in the presence of 0.1 mM dioctanoyl-phosphatidylcholine (diC(8)PC). Analysis of the metabolism of methyl-(13)C-labeled diC(8)PC ((methyl-(13)C)(3)-diC(8)PC) by electrospray ionization tandem mass spectrometry (ESI-MS/MS) revealed that it was rapidly converted to (methyl-(13)C)(3)-PCs containing C16 or C18 acyl chains. (Methyl-(13)C)(3)-8:0-lyso-PC, (methyl-(13)C)(3)-8:0-16:0-PC and (methyl-(13)C)(3)-8:0-16:1-PC, which are the probable intermediate molecular species of acyl chain remodeling, appeared immediately after 5 min of pulse-labeling and decreased during the subsequent chase period. These results indicate that diC(8)PC was taken up by the pem1 pem2 double mutant and that the acyl chains of diC(8)PC were exchanged with longer yeast fatty acids. The temporary appearance of (methyl-(13)C)(3)-8:0-lyso-PC suggests that the remodeling reaction may consist of deacylation and reacylation by phospholipase activities and acyltransferase activities, respectively. The detailed analyses of the structures of (methyl-(13)C)(3)-8:0-16:0-PC and (methyl-(13)C)(3)-8:0-16:1-PC by MS/MS and MS(3) strongly suggest that most (methyl-(13)C)(3)-8:0-16:0-PCs have a C16:0 acyl chain at sn-1 position, whereas (methyl-(13)C)(3)-8:0-16:1-PCs have a C16:1 acyl chain at either sn-1 or sn-2 position in a similar frequency, implying that the initial C16:0 acyl chain substitution prefers the sn-1 position; however, the C16:1 acyl chain substitution starts at both sn-1 and sn-2 positions. The current study provides a pivotal insight into the acyl chain remodeling of phospholipids in yeast.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号