首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   996篇
  免费   61篇
  国内免费   2篇
  1059篇
  2023年   3篇
  2022年   9篇
  2021年   11篇
  2020年   7篇
  2019年   6篇
  2018年   21篇
  2017年   16篇
  2016年   25篇
  2015年   25篇
  2014年   31篇
  2013年   46篇
  2012年   76篇
  2011年   67篇
  2010年   47篇
  2009年   39篇
  2008年   68篇
  2007年   83篇
  2006年   69篇
  2005年   55篇
  2004年   75篇
  2003年   71篇
  2002年   73篇
  2001年   13篇
  2000年   5篇
  1999年   12篇
  1998年   17篇
  1997年   13篇
  1996年   7篇
  1995年   9篇
  1994年   6篇
  1993年   11篇
  1992年   8篇
  1991年   2篇
  1990年   3篇
  1988年   1篇
  1987年   6篇
  1986年   5篇
  1985年   4篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1973年   2篇
  1972年   2篇
排序方式: 共有1059条查询结果,搜索用时 18 毫秒
811.

Background

Mitochondria are multifunctional organelles that not only serve as cellular energy stores but are also actively involved in several cellular stress responses, including apoptosis. In addition, mitochondria themselves are also continuously challenged by stresses such as reactive oxygen species (ROS), an inevitable by-product of oxidative phosphorylation. To exert various functions against these stresses, mitochondria must be equipped with appropriate stress responses that monitor and maintain their quality.

Scope of review

Interestingly, increasing evidence indicates that mitochondrial proteolysis has important roles in mitochondrial and cellular stress responses. In this review, we summarize current advances in mitochondrial proteolysis-mediated stress responses.

Major conclusions

Mitochondrial proteases do not only function as surveillance systems of protein quality control by degrading unfolded proteins but also regulate mitochondrial stress responses by processing specific mitochondrial proteins.

General significance

Studies on the regulation of mitochondrial proteolysis-mediated stress responses will provide the novel mechanistic insights into the stress response research fields.  相似文献   
812.
Shp2 (Src homology 2 domain-containing protein tyrosine phosphatase 2) regulates neural cell differentiation. It is also expressed in postmitotic neurons, however, and mutations of Shp2 are associated with clinical syndromes characterized by mental retardation. Here we show that conditional-knockout (cKO) mice lacking Shp2 specifically in postmitotic forebrain neurons manifest abnormal behavior, including hyperactivity. Novelty-induced expression of immediate-early genes and activation of extracellular-signal-regulated kinase (Erk) were attenuated in the cerebral cortex and hippocampus of Shp2 cKO mice, suggestive of reduced neuronal activity. In contrast, ablation of Shp2 enhanced high-K+-induced Erk activation in both cultured cortical neurons and synaptosomes, whereas it inhibited that induced by brain-derived growth factor in cultured neurons. Posttetanic potentiation and paired-pulse facilitation were attenuated and enhanced, respectively, in hippocampal slices from Shp2 cKO mice. The mutant mice also manifested transient impairment of memory formation in the Morris water maze. Our data suggest that Shp2 contributes to regulation of Erk activation and synaptic plasticity in postmitotic forebrain neurons and thereby controls locomotor activity and memory formation.  相似文献   
813.
A large number of commensal bacteria inhabit the intestinal tract, and interbacterial communication among gut microbiota is thought to occur. In order to analyze symbiotic relationships between probiotic strains and the gut microbiota, a ring with a membrane filter fitted to the bottom was used for in vitro investigations. Test strains comprising probiotic nitto strains (Lactobacillus acidophilus NT and Bifidobacterium longum NT) and type strains (L. acidophilus JCM1132T and B. longum JCM1217T) were obtained from diluted fecal samples using the membrane filter to simulate interbacterial communication. Bifidobacterium spp., Streptococcus pasteurianus, Collinsella aerofaciens, and Clostridium spp. were the most abundant gut bacteria detected before coculture with the test strains. Results of the coculture experiments indicated that the test strains significantly promote the growth of Ruminococcus gnavus, Ruminococcus torques, and Veillonella spp. and inhibit the growth of Sutterella wadsworthensis. Differences in the relative abundances of gut bacterial strains were furthermore observed after coculture of the fecal samples with each test strain. Bifidobacterium spp., which was detected as the dominant strain in the fecal samples, was found to be unaffected by coculture with the test strains. In the present study, interbacterial communication using bacterial metabolites between the test strains and the gut microbiota was demonstrated by the coculture technique. The detailed mechanisms and effects of the complex interbacterial communications that occur among the gut microbiota are, however, still unclear. Further investigation of these relationships by coculture of several fecal samples with probiotic strains is urgently required.  相似文献   
814.
We determined the changes in the levels of the mammalian small heat shock protein of 25-28 kDa (hsp27) and the hsp alphaB-crystallin in various regions of rat brain after kainic acid-induced seizure activity by means of specific immunoassays. The levels of hsp27 in the hippocampus and entorhinal cortex were markedly increased and reached a maximum (1.5-2 microg/mg of protein) 2-4 days after the seizure. The levels of hsp27 in these regions were considerably high even 10 days after the seizure. A marked increase in levels of mRNA for hsp27 was also observed in the hippocampus of rats 1-2 days after the seizure. A severalfold increase in the levels of alphaB-crystallin was observed in the hippocampus and entorhinal cortex of rats 2 days after the seizure. However, the maximum levels were <50 ng/mg of protein. The levels of protein sulfhydryl group and glutathione were significantly reduced in the hippocampus of rats at 24 h after the seizure, which might have enhanced the expressions of hsp27 and alphaB-crystallin. The expression of inducible mammalian hsp of 70 kDa (hsp70) was also enhanced in the hippocampus of rats after the seizure, as detected by western and northern blotting analyses. Immunohistochemically, an intensive staining of hsp27 was observed in both glial cells and neurons in the hippocampus, piriform cortex, and entorhinal cortex of rats with kainic acid-induced seizure. However, in the cerebellum, where the receptors for kainic acid are also rich, hsp27 was barely induced in the same rats. This might be due to high levels of the cerebellar calcium-binding proteins parvalbumin and 28-kDa calbindin-D, which might have a protective effect against the kainic acid-inducible damage.  相似文献   
815.
Telomere binding protein Stn1 forms the CST (Cdc13/CTC1-STN1-TEN1) complex in budding yeast and mammals. Likewise, fission yeast Stn1 and Ten1 form a complex indispensable for telomere protection. We have previously reported that stn1-1, a high-temperature sensitive mutant, rapidly loses telomere DNA at the restrictive temperature due to frequent failure of replication fork progression at telomeres and subtelomeres, both containing repetitive sequences. It is unclear, however, whether Stn1 is required for maintaining other repetitive DNAs such as ribosomal DNA. In this study, we have demonstrated that stn1-1 cells, even when grown at the permissive temperature, exhibited dynamic rearrangements in the telomere-proximal regions of subtelomere and ribosomal DNA repeats. Furthermore, Rad52 and γH2A accumulation was observed at ribosomal DNA repeats in the stn1-1 mutant. The phenotypes exhibited by the stn1-1 allele were largely suppressed in the absence of Reb1, a replication fork barrier-forming protein, suggesting that Stn1 is involved in the maintenance of the arrested replication forks. Collectively, we propose that Stn1 maintains the stability of repetitive DNAs at subtelomeres and rDNA regions.  相似文献   
816.
Galectin-3 (Gal-3), a member of the beta-galactoside binding protein family containing the NWGR antideath motif of the Bcl-2 protein family, is involved in various aspects of cancer progression. Previously, it has been shown that the antiapoptotic activity of Gal-3 is regulated by the phosphorylation at Ser(6) by casein kinase 1 (CK1). Here we questioned how phosphorylation at Ser(6) regulates Gal-3 function. We have generated serine-to-alanine (S6A) and serine-to-glutamic acid (S6E) Gal-3 mutants and transfected them into the BT-549 human breast carcinoma cell line, which does not express Gal-3. BT-549 cell clones expressing wild-type (wt) and mutant Gal-3 were exposed to chemotherapeutic anticancer drugs. In response to the apoptotic insults, phosphorylated wt Gal-3 was exported from the nucleus to the cytoplasm and protected the BT-549 cells from drug-induced apoptosis while nonphosphorylated mutant Gal-3 neither was exported from the nucleus nor protected BT-549 cells from drug-induced apoptosis. Furthermore, leptomycin B, a nuclear export inhibitor, increased the cisplatin-induced apoptosis of Gal-3 expressing BT-549 cells. These results suggest that Ser(6) phosphoryaltion acts as a molecular switch for its cellular translocation from the nucleus to the cytoplasm and, as a result, regulates the antiapoptotic activity of Gal-3.  相似文献   
817.
MyD88, a Toll/interleukin-1 receptor homology (TIR) domain-containing adaptor protein, mediates signals from the Toll-like receptors (TLR) or IL-1/IL-18 receptors to downstream kinases. In MyD88-dependent TLR4 signaling, the function of MyD88 is enhanced by another TIR domain-containing adaptor, Mal/TIRAP, which brings MyD88 to the plasma membrane and promotes its interaction with the cytosolic region of TLR4. Hence, Mal is recognized as the "sorting adaptor" for MyD88. In this study, a direct interaction between MyD88-TIR and another membrane-sorting adaptor, TRAM/TICAM-2, was demonstrated in vitro. Cell-based assays including RNA interference experiments and TRAM deficient mice revealed that the interplay between MyD88 and TRAM in cells is important in mediating IL-18 signal transduction. Live cell imaging further demonstrated the co-localized accumulation of MyD88 and TRAM in the membrane regions in HEK293 cells. These findings suggest that TRAM serves as the sorting adaptor for MyD88 in IL-18 signaling, which then facilitates the signal transduction. The binding sites for TRAM are located in the TIR domain of MyD88 and actually overlap with the binding sites for Mal. MyD88, the multifunctional signaling adaptor that works together with most of the TLR members and with the IL-1/IL-18 receptors, can interact with two distinct sorting adaptors, TRAM and Mal, in a conserved manner in a distinct context.  相似文献   
818.
Individuals with autism spectrum disorders (ASD) tend to make inadequate social judgments, particularly when the nonverbal and verbal emotional expressions of other people are incongruent. Although previous behavioral studies have suggested that ASD individuals have difficulty in using nonverbal cues when presented with incongruent verbal-nonverbal information, the neural mechanisms underlying this symptom of ASD remain unclear. In the present functional magnetic resonance imaging study, we compared brain activity in 15 non-medicated adult males with high-functioning ASD to that of 17 age-, parental-background-, socioeconomic-, and intelligence-quotient-matched typically-developed (TD) male participants. Brain activity was measured while each participant made friend or foe judgments of realistic movies in which professional actors spoke with conflicting nonverbal facial expressions and voice prosody. We found that the ASD group made significantly less judgments primarily based on the nonverbal information than the TD group, and they exhibited significantly less brain activity in the right inferior frontal gyrus, bilateral anterior insula, anterior cingulate cortex/ventral medial prefrontal cortex (ACC/vmPFC), and dorsal medial prefrontal cortex (dmPFC) than the TD group. Among these five regions, the ACC/vmPFC and dmPFC were most involved in nonverbal-information-biased judgments in the TD group. Furthermore, the degree of decrease of the brain activity in these two brain regions predicted the severity of autistic communication deficits. The findings indicate that diminished activity in the ACC/vmPFC and dmPFC underlies the impaired abilities of individuals with ASD to use nonverbal content when making judgments regarding other people based on incongruent social information.  相似文献   
819.
820.
The consecutive genes BF0771–BF0774 in the genome of Bacteroidesfragilis NCTC 9343 were found to constitute an operon. The functional analysis of BF0772 showed that the gene encoded a novel enzyme, mannosylglucose phosphorylase that catalyzes the reaction, 4-O-β-d-mannopyranosyl-d-glucose + Pi → mannose-1-phosphate + glucose. Here we propose a new mannan catabolic pathway in the anaerobe, which involves 1,4-β-mannanase (BF0771), a mannobiose and/or sugar transporter (BF0773), mannobiose 2-epimerase (BF0774), and mannosylglucose phosphorylase (BF0772), finally progressing to glycolysis. This pathway is distributed in microbes such as Bacteroides, Parabacteroides, Flavobacterium, and Cellvibrio.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号