首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2095篇
  免费   159篇
  2254篇
  2022年   13篇
  2021年   16篇
  2020年   12篇
  2019年   17篇
  2018年   34篇
  2017年   24篇
  2016年   29篇
  2015年   54篇
  2014年   49篇
  2013年   146篇
  2012年   98篇
  2011年   75篇
  2010年   59篇
  2009年   49篇
  2008年   88篇
  2007年   116篇
  2006年   95篇
  2005年   87篇
  2004年   97篇
  2003年   92篇
  2002年   96篇
  2001年   90篇
  2000年   70篇
  1999年   65篇
  1998年   26篇
  1997年   28篇
  1996年   17篇
  1995年   21篇
  1994年   18篇
  1993年   15篇
  1992年   40篇
  1991年   51篇
  1990年   55篇
  1989年   65篇
  1988年   42篇
  1987年   43篇
  1986年   29篇
  1985年   24篇
  1984年   11篇
  1983年   11篇
  1982年   12篇
  1981年   18篇
  1979年   15篇
  1978年   10篇
  1977年   11篇
  1975年   13篇
  1974年   22篇
  1973年   9篇
  1972年   11篇
  1967年   9篇
排序方式: 共有2254条查询结果,搜索用时 15 毫秒
91.
92.
In mammals, 5,8,11-eicosatrienoic acid (Mead acid, 20:3n − 9) is synthesized from oleic acid during a state of essential fatty acid deficiency (EFAD). Mead acid is thought to be produced by the same enzymes that synthesize arachidonic acid and eicosapentaenoic acid, but the genes and the pathways involved in the conversion of oleic acid to Mead acid have not been fully elucidated. The levels of polyunsaturated fatty acids in cultured cells are generally very low compared to those in mammalian tissues. In this study, we found that cultured cells, such as NIH3T3 and Hepa1–6 cells, have significant levels of Mead acid, indicating that cells in culture are in an EFAD state under normal culture conditions. We then examined the effect of siRNA-mediated knockdown of fatty acid desaturases and elongases on the level of Mead acid, and found that knockdown of Elovl5, Fads1, or Fads2 decreased the level of Mead acid. This and the measured levels of possible intermediate products for the synthesis of Mead acid such as 18:2n − 9, 20:1n − 9 and 20:2n − 9 in the knocked down cells indicate two pathways for the synthesis of Mead acid: pathway 1) 18:1n − 9 → (Fads2) → 18:2n − 9 → (Elovl5) → 20:2n − 9 → (Fads1) → 20:3n − 9 and pathway 2) 18:1n − 9 → (Elovl5) → 20:1n − 9 → (Fads2) → 20:2n − 9 → (Fads1) → 20:3n − 9.  相似文献   
93.
We constructed mutant protein kinase C (PKC) cDNAs which expressed PKC activity in vivo in the absence of phorbol ester activation. A hybrid PKC gene, PKAC, was constructed by substituting the coding region for the N-terminal 253 amino acids of PKC alpha with the N-terminal 17 amino acids of the cyclic AMP-dependent protein kinase catalytic subunit (PKA). A truncated PKC gene, delta PKC beta, lacking the coding region for amino acid positions 6 to 159 of PKC beta was also constructed. These mutant kinase genes expressed under the control of the SR alpha promoter activated the c-fos gene enhancer in Jurkat cells and initiated maturation of Xenopus laevis oocytes. Phorbol ester binding activity was absent in both constructs but was preserved in another hybrid gene, PKCA, which was composed of the coding region for 1 to 253 amino acids of PKC alpha at the N-terminal side and the coding region for 18 to 350 amino acids of PKA at the C-terminal side. These results indicate that elimination of the regulatory domain of PKC produces constitutively active PKC that can bypass activation by the phorbol ester. delta PKC beta, in synergy with a calcium ionophore, was capable of activating the interleukin 2 promoter, indicating that cooperation of PKC-dependent and calcium-dependent pathways is necessary for activation of the interleukin 2 gene.  相似文献   
94.
95.
The suppressive effect of human natural killer (NK) cells on B cell differentiation induced by pokeweed mitogen (PWM) was investigated. By using Percoll discontinuous density gradient centrifugation, peripheral blood nonphagocytic and nonadherent mononuclear cells were divided into low and high density fractions for which NK cells (Large granular lymphocytes, LGL) and T cells were enriched, respectively. These fractionated mononuclear cells were co-cultured with purified autologous B cells in the presence of PWM, and were examined for their helper and suppressor activities on differentiation of B cells to immunoglobulin-(IgM and IgG) producing cells by a highly sensitive reversed hemolytic plaque assay. The T cell-enriched high density fractions provided help for B cell differentiation to levels higher than that of unfractionated mononuclear cells. On the other hand, the NK-enriched low density fractions did not show helper activity, and when added to the culture of B cells plus helper T cells, they markedly suppressed B cell differentiation. This suppressive activity, as well as the NK cytotoxicity of the NK-enriched fractions, was abrogated by treatment of the cells with monoclonal antibody against human NK cells (HNK-1), but not against T cells (OKT3) in the presence of complement. NK cells also suppressed PWM-driven B cell differentiation in the presence of T4+ (helper/inducer T) but not T8+ (cytotoxic/suppressor T) cells; however, they showed no inhibition of soluble factor-induced B cell differentiation assayed in the absence of helper T cells. It is thus concluded that human peripheral blood NK cells exhibit an ability to suppress PWM-driven B cell differentiation, possibly by acting through the effect on helper T cells but not directly on B cells.  相似文献   
96.
Kakeromamide A (1), a new cyclic pentapeptide encompassing a thiazole ring moiety and a β-amino acid, was isolated from the marine cyanobacterium Moorea bouillonii. Its structure was elucidated by the spectral analysis and the modified Marfey’s method. Compound 1 induced differentiation of neural stem cells into astrocytes at the concentration of 10?µM.  相似文献   
97.
Two types of activation Ag, low affinity FcR for IgE (Fc epsilon R2)/CD23 and IL-2R (Tac/p55), were expressed and differently regulated on human eosinophilic leukemia cell lines (EoL-1 and EoL-3). Because the binding of IgE on EoL-3 cells was completely inhibited by H107 (anti-Fc epsilon R2/CD23 mAb) but not by irrelevant mAb, essentially all the low affinity Fc epsilon R2 on EoL-3 seemed to be the Fc epsilon R2/CD23 molecules. Both IL-4 and IFN-gamma enhanced the surface expression of Fc epsilon R2, whereas IL-1, IL-2, and IL-5 showed no effects, as determined by surface staining with anti-Fc epsilon R2 antibody (H107). In contrast to Fc epsilon R2 up-regulation, IL-4 and IFN-gamma showed a differential effect on the regulation of IL-2R (Tac/p55). Whereas IFN-gamma up-regulated the receptor expression of IL-2R/Tac, IL-4 did not. The result suggests that these lymphokines are involved in the different aspects of the activation pathway of the eosinophils. The possible role of Fc epsilon R2 and IL-2R on the function of eosinophils in allergic reaction is discussed.  相似文献   
98.
According to conventional views, the rosy bitterling, Rhodeus ocellatus, comprises two subspecies, R. ocellatus kurumeus and R. ocellatus ocellatus, the former being native to Japan whereas the latter was introduced into Japan from China during World War II. To examine the genetic structure of Japanese R. ocellatus, part of the mitochondrial cytochrome b gene from 48 individuals collected from various locations in Japan was sequenced. Three major mitochondrial lineages were found. Based on historical evidence, two of these represent R. ocellatus ocellatus and the third R. ocellatus kurumeus. The existence of two distinct lineages of R. ocellatus ocellatus in Japan suggests at least two colonizations. Some local populations comprised purely R. ocellatus kurumeus, but those from Kashima and Ogori included both subspecies. Because the proportion of R. ocellatus ocellatus in Kashima increased from 1994 to 1995, invasion by R. ocellatus ocellatus into R. ocellatus kurumeus habitats is apparently in progress. Received: April 30, 1999 / Revised: March 22, 2000 / Accepted: December 20, 2000  相似文献   
99.
Glutamate is implicated in neuronal cell death. Exogenously applied DOPA by itself releases neuronal glutamate and causes neuronal cell death in in vitro striatal systems. Herein, we attempt to clarify whether endogenous DOPA is released by 10 min transient ischemia due to four-vessel occlusion during rat striatal microdialysis and, further, whether DOPA, when released, functions to cause glutamate release and resultant delayed neuronal cell death. Ischemia increased extracellular DOPA, dopamine, and glutamate, and elicited neuronal cell death 96 h after ischemic insult. Inhibition of striatal L-aromatic amino acid decarboxylase 10 min before ischemia increased markedly basal DOPA, tripled glutamate release with a tendency of decrease in dopamine release by ischemia, and exaggerated neuronal cell death. Intrastriatal perfusion of 10-30 nM DOPA cyclohexyl ester, a competitive DOPA antagonist, 10 min before ischemia, concentration-dependently decreased glutamate release without modification of dopamine release by ischemia. At 100 nM, the antagonist elicited a slight ceiling effect on decreases in glutamate release by ischemia and protected neurons from cell death. Glutamate was released concentration-dependently by intrastriatal perfusion of 0.3-1 mM DOPA and stereoselectively by 0.6 mM DOPA. The antagonist elicited no hypothermia during and after ischemia. Endogenously released DOPA is an upstream causal factor for glutamate release and resultant delayed neuronal cell death by brain ischemia in rat striata. DOPA antagonist has a neuroprotective action.  相似文献   
100.
The chemical property of 6-formylpterin and its biological functions were examined. Polarographic studies revealed that 6-formylpterin reacted with NAD(P)H and consumed oxygen. In contrast, other conjugated pterins, such as biopterin and neopterin, showed no consumption of oxygen. The production analysis using high-performance liquid chromatography documented that 6-formylpterin catalyzes the conversion from NADH to NAD. Electroparamagnetic resonance spin trapping experiments demonstrated that this reaction is accompanied with the generation of reactive oxygen species (ROS), superoxide anion and hydrogen peroxide. When 6-formylpterin was administered to HL-60 cells, intracellular ROS generation was observed and apoptosis was induced. In contrast, other conjugated pterins induced neither intracellular ROS generation nor apoptosis in HL-60 cells. The intracellular ROS generation by 6-formylpterin was observed in other cells, such as PanC-1 cells and Jurkat cells. 6-formylpterin suppressed cell proliferation in PanC-1 cells and inhibited Fas-mediated apoptosis in Jurkat cells. These findings indicate that, among conjugated pterins, 6-formylpterin has the unique property to transfer electron from NAD(P)H to oxygen and that the property brings about intracellular ROS generation, which exerts various biological functions such as induction of apoptosis, suppression of cell proliferation, and inhibition of Fas-mediated apoptosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号