首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   311篇
  免费   25篇
  336篇
  2021年   3篇
  2020年   3篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   11篇
  2015年   11篇
  2014年   9篇
  2013年   12篇
  2012年   20篇
  2011年   16篇
  2010年   12篇
  2009年   12篇
  2008年   14篇
  2007年   22篇
  2006年   29篇
  2005年   28篇
  2004年   26篇
  2003年   26篇
  2002年   26篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   7篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   5篇
  1992年   2篇
  1990年   2篇
  1989年   1篇
  1987年   2篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1979年   4篇
  1977年   1篇
  1969年   1篇
  1967年   1篇
排序方式: 共有336条查询结果,搜索用时 15 毫秒
291.
The etiology of ulcerative colitis (UC) is unknown, while an exacerbating factor of this disease is associated with infectious agents. Recently, Fusobacterium varium has been found in the mucosa of a significant number of patients with UC. The aim of this study was to estimate the prevalence of F. varium infection based on serology, evaluate the relationship between F. varium seropositivity and UC, and determine the clinical characteristics of infected UC individuals. Seropositive patients were determined by immunoblotting with F. varium ATCC 8501 antigen. We also identified cross-reactive protein spots by peptide mass mapping analysis. These protein spots showed putative caseinolytic protease protein, putative translation elongation factor G, and putative enolase. Immunoblotting with F. varium antigen revealed signals with sera from 45 (40.2%) of the 112 UC patients and 20 (15.6%) of the 128 healthy controls, respectively ( P <0.01). In terms of disease activity, seropositive UC patients were more likely to have clinically severe disease than seronegative UC patients. Disease location in seropositive patients was more extensive than the seronegative patients. In conclusion, F. varium is a predominant infection in the UC population and is a potential pathogen of UC.  相似文献   
292.
An almost entire skeleton of a male individual of Nacholapithecus kerioi (KNM-BG 35250) was discovered from Middle Miocene (approximately 15 Ma) sediments at Nachola, northern Kenya. N. kerioi exhibits a shared derived subnasal morphology with living apes. In many postcranial features, such as articular shape, as well as the number of the lumbar vertebrae, N. kerioi resembles Proconsul heseloni and/or P. nyanzae, and lacks suspensory specializations characteristic of living apes. Similarly, N. kerioi shares some postcranial characters with Kenyapithecus spp. However, despite the resemblance, N. kerioi and Proconsul spp. are quite different in their body proportions and some joint morphologies. N. kerioi has proportionally large forelimb bones and long pedal digits compared to its hindlimb bones and lumbar vertebrae. Its distinctive body proportions suggest that N. kerioi was more derived for forelimb dominated arboreal activities than P. nyanzae and P. heseloni. On the other hand, it exhibits a mixture of derived and primitive cranio-dental and postcranial features relative to the contemporaneous Kenyapithecus and Early MioceneMorotopithecus. While the phylogenetic position of N. kerioi is unsettled, it seems necessary to posit parallel evolution of cranio-dental and/or postcranial features in fossil and living apes.  相似文献   
293.
A simple calculation method to evaluate the redox potential of molecules by using a hybrid-type calculation with molecular dynamics (MD) and density functional theory calculations is presented with discussions of the difference of the redox potential. In our hybrid method, the standard Gibbs free energy of the molecules, acetone and 3-pentanone, in the redox reaction, is estimated from the average of ionisation free energy and the excess chemical potentials of the reduced and oxidised molecules according to the Born–Haber cycle by sampled configurations from the MD simulation. The difference of the redox potentials between the two molecules is in agreement with the experimental data within the standard deviation.  相似文献   
294.
Background aimsHuman bone marrow mesenchymal stromal cells are useful in regenerative medicine for various diseases, but it remains unclear whether the aging of donors alters the multipotency of these cells. In this study, we examined age-related changes in the chondrogenic, osteogenic and adipogenic potential of mesenchymal stromal cells from 17 donors (25–81 years old), including patients with or without systemic vascular diseases.MethodsAll stem cell lines were expanded with fibroblast growth factor-2 and then exposed to differentiation induction media. The chondrogenic potential was determined from the glycosaminoglycan content and the SOX9, collagen type 2 alpha 1 (COL2A1) and aggrecan (AGG) messenger RNA levels. The osteogenic potential was determined by monitoring the alkaline phosphatase activity and calcium content, and the adipogenic potential was determined from the glycerol-3-phosphate dehydrogenase activity and oil red O staining.ResultsSystemic vascular diseases, including arteriosclerosis obliterans and Buerger disease, did not significantly affect the trilineage differentiation potential of the cells. Under these conditions, all chondrocyte markers examined, including the SOX9 messenger RNA level, showed age-related decline, whereas none of the osteoblast or adipocyte markers showed age-dependent changes.ConclusionsThe aging of donors from young adult to elderly selectively decreased the chondrogenic potential of mesenchymal stromal cells. This information will be useful in stromal cell–based therapy for cartilage-related diseases.  相似文献   
295.
Trichomoniasis is the most common non-viral sexually transmitted infection caused by the vaginotropic extracellular protozoan parasite Trichomonas vaginalis. The infection is recurrent, with no lasting immunity, often asymptomatic, and linked to pregnancy complications and risk of viral infection. The molecular mechanisms of immune evasion by the parasite are poorly understood. We demonstrate that galectin-1 and -3 are expressed by the human cervical and vaginal epithelial cells and act as pathogen-recognition receptors for the ceramide phosphoinositol glycan core (CPI-GC) of the dominant surface protozoan lipophosphoglycan (LPG). We used an in vitro model with siRNA galectin knockdown epithelial clones, recombinant galectins, clinical Trichomonas isolates, and mutant protozoan derivatives to dissect the function of galectin-1 and -3 in the context of Trichomonas infection. Galectin-1 suppressed chemokines that facilitate recruitment of phagocytes, which can eliminate extracellular protozoa (IL-8) or bridge innate to adaptive immunity (MIP-3α and RANTES (regulated on activation normal T cell expressed and secreted)). Silencing galectin-1 increased and adding exogenous galectin-1 suppressed chemokine responses to Trichomonas or CPI-GC/LPG. In contrast, silencing galectin-3 reduced IL-8 response to LPG. Live Trichomonas depleted the extracellular levels of galectin-3. Clinical isolates and mutant Trichomonas CPI-GC that had reduced affinity to galectin-3 but maintained affinity to galectin-1 suppressed chemokine expression. Thus via CPI-GC binding, Trichomonas is capable of regulating galectin bioavailability and function to the benefit of its parasitic survival. These findings suggest novel approaches to control trichomoniasis and warrant further studies of galectin-binding diversity among clinical isolates as a possible source for symptom disparity in parasitic infections.  相似文献   
296.
297.
Reproductive barriers are important for the maintenance of species identity. We discovered a reproductive barrier via hybrid breakdown among the progeny of a cross between the japonica rice cultivar Koshihikari and the indica rice cultivar Habataki. Genetic analysis indicated that the hybrid breakdown is regulated by the interaction of two recessive genes: hbd2 in Habataki and hbd3 in Koshihikari. Linkage mapping showed that hbd2 is located near the 100 cM region of chromosome 2 in Habataki, whereas hbd3 is located near the 60 cM region of chromosome 11 in Koshihikari. Construction of nearly isogenic lines for hbd2 and Hbd3 (NIL-hbd2 and NIL-Hbd3), as well as a pyramiding line (NIL-hbd2 + Hbd3), confirmed that the hybrid breakdown is induced by the interaction of these two recessive genes. Our results indicate that these genes are novel for the induction of hybrid breakdown in rice.  相似文献   
298.
Growth factors and cytokines play an important role in tissue development and repair. However, it remains unknown how they act on proliferation and differentiation of periodontal ligament cells. In this study, we investigated the effects of several growth factors and cytokines on the synthesis of DNA, alkaline phosphatase (ALPase), fibronectin, and secreted protein acidic and rich in cysteine (SPARC) in human periodontal ligament (HPL) cells. Transforming growth factor-beta (TGF-beta) increased the synthesis of DNA, fibronectin and SPARC, whereas it decreased ALPase activity. Basic fibroblast growth factor (bFGF), platelet-derived growth factor (PDGF) and tumor necrosis factor-alpha (TNF-alpha) decreased SPARC and ALPase levels, whereas these peptides increased DNA synthesis and did not affect fibronectin synthesis. Epidermal growth factor (EGF) up-regulated the synthesis of DNA and fibronectin and inhibited SPARC and ALPase levels. Interleukin-1beta (IL-1beta) decreased the synthesis of DNA, ALPase, fibronectin and SPARC. These findings demonstrate that TGF-beta, bFGF, EGF, PDGF, TNF-alpha and IL-1beta have characteristically different patterns of action on DNA, SPARC, fibronectin and ALPase synthesis by HPL cells. The differences in regulation of function of periodontal ligament cells by these peptides may be involved in the regeneration and repair of periodontal tissue.  相似文献   
299.
The pathway oxoaverantin (OAVN) → averufin (AVR) → hydroxyversicolorone (HVN) → versiconal hemiacetal acetate (VHA) is involved in aflatoxin biosynthesis, and the cypX and moxY genes, which are present in the aflatoxin gene cluster, have been previously suggested to be involved in this pathway. To clarify the function of these two genes in more detail, we disrupted the genes in aflatoxigenic Aspergillus parasiticus NRRL 2999. The cypX-deleted mutant lost aflatoxin productivity and accumulated AVR in the mycelia. Although this mutant converted HVN, versicolorone (VONE), VHA, and versiconol acetate (VOAc) to aflatoxins in feeding experiments, it could not produce aflatoxins from either OAVN or AVR. The moxY-deleted mutant also lost aflatoxin productivity, whereas it newly accumulated HVN and VONE. In feeding experiments, this mutant converted either VHA or VOAc to aflatoxins but did not convert OAVN, AVR, HVN, or VONE to aflatoxins. These results demonstrated that cypX encodes AVR monooxygenase, catalyzing the reaction from AVR to HVN, and moxY encodes HVN monooxygenase, catalyzing a Baeyer-Villiger reaction from HVN to VHA as well as from VONE to VOAc. In this work, we devised a simple and rapid method to extract DNA from many fungi for PCR analyses in which cell disruption with a shaker and phenol extraction were combined.  相似文献   
300.
The effective sizes of ancestral populations and species divergence times of six primate species (humans, chimpanzees, gorillas, orangutans, and representatives of Old World monkeys and New World monkeys) are estimated by applying the two-species maximum likelihood (ML) method to intron sequences of 20 different loci. Examination of rate heterogeneity of nucleotide substitutions and intragenic recombination identifies five outrageous loci (ODC1, GHR, HBE, INS, and HBG). The estimated ancestral polymorphism ranges from 0.21 to 0.96% at major divergences in primate evolution. One exceptionally low polymorphism occurs when African and Asian apes diverged. However, taking into consideration the possible short generation times in primate ancestors, it is concluded that the ancestral population size in the primate lineage was no smaller than that of extant humans. Furthermore, under the assumption of 6 million years (myr) divergence between humans and chimpanzees, the divergence time of humans from gorillas, orangutans, Old World monkeys, and New World monkeys is estimated as 7.2, 18, 34, and 65 myr ago, respectively, which are generally older than traditional estimates. Beside the intron sequences, three other data sets of orthologous sequences are used between the human and the chimpanzee comparison. The ML application to these data sets including 58,156 random BAC end sequences (BES) shows that the nucleotide substitution rate is as low as 0.6–0.8 × 10–9 per site per year and the extent of ancestral polymorphism is 0.33–0.51%. With such a low substitution rate and short generation time, the relatively high extent of polymorphism suggests a fairly large effective population size in the ancestral lineage common to humans and chimpanzees.[Reviewing Editor: Dr. Magnus Nordborg]  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号