首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8999篇
  免费   778篇
  国内免费   2篇
  2021年   85篇
  2020年   52篇
  2019年   66篇
  2018年   100篇
  2017年   93篇
  2016年   126篇
  2015年   203篇
  2014年   242篇
  2013年   488篇
  2012年   416篇
  2011年   422篇
  2010年   246篇
  2009年   225篇
  2008年   398篇
  2007年   418篇
  2006年   402篇
  2005年   421篇
  2004年   388篇
  2003年   381篇
  2002年   386篇
  2001年   325篇
  2000年   367篇
  1999年   339篇
  1998年   114篇
  1997年   95篇
  1996年   103篇
  1995年   99篇
  1994年   84篇
  1993年   108篇
  1992年   274篇
  1991年   184篇
  1990年   199篇
  1989年   199篇
  1988年   303篇
  1987年   178篇
  1986年   150篇
  1985年   132篇
  1984年   103篇
  1983年   85篇
  1982年   56篇
  1981年   60篇
  1979年   74篇
  1978年   56篇
  1977年   39篇
  1976年   42篇
  1975年   42篇
  1974年   57篇
  1973年   42篇
  1972年   49篇
  1968年   38篇
排序方式: 共有9779条查询结果,搜索用时 15 毫秒
111.
112.
Summary Among 200 strains of marine bluegreen algae isolated from the coastal areas of Japan, the marine blue-green alga Synechococcus sp. NKBG 040607 excreted glutamate at the highest rate, 82.6% of total amino acids production being glutamate. Synechococcus sp. NKBG 40607 was immobilized in calcium alginate gel. Glutamate production by immobilized cells was double that of native cells. Maximal glutamate production (25 g/cm3 gel per day) of the immobilized cells was observed under a light intensity of 144 Einstein/m2 per second at a cell concentration of 7.5 mg dry cells/cm3 gel. Immobilized cells of Synechococcus sp. can use nitrate as a nitrogen source. Immobilized marine Synechococcus sp. produced 0265 mg/cm3 gel of glutamate for 7 days in the presence of chloramphenicol.  相似文献   
113.
A soluble form of recombinant gp120 of human immunodeficiency virus type 1 was used as an immunogen for production of murine monoclonal antibodies. These monoclonal antibodies were characterized for their ability to block the interaction between gp120 and the acquired immunodeficiency syndrome virus receptor, CD4. Three of the monoclonal antibodies were found to inhibit this interaction, whereas the other antibodies were found to be ineffective at blocking binding. The gp120 epitopes which are recognized by these monoclonal antibodies were mapped by using a combination of Western blot (immunoblot) analysis of gp120 proteolytic fragments, immunoaffinity purification of fragments of gp120, and antibody screening of a random gp120 gene fragment expression library produced in the lambda gt11 expression system. Two monoclonal antibodies which blocked gp120-CD4 interaction were found to map to adjacent sites in the carboxy-terminal region of the glycoprotein, suggesting that this area is important in the interaction between gp120 and CD4. One nonblocking antibody was found to map to a position that was C terminal to this CD4 blocking region. Interestingly, the other nonblocking monoclonal antibodies were found to map either to a highly conserved region in the central part of the gp120 polypeptide or to a highly conserved region near the N terminus of the glycoprotein. N-terminal deletion mutants of the soluble envelope glycoprotein which lack these highly conserved domains but maintain the C-terminal CD4 interaction sites were unable to bind tightly to the CD4 receptor. These results suggest that although the N-terminal and central conserved domains of intact gp120 do not appear to be directly required for CD4 binding, they may contain information that allows other parts of the molecule to form the appropriate structure for CD4 interaction.  相似文献   
114.
Summary The complete nucleotide sequence of the Escherichia coli cybB gene for diheme cytochrome b 561 and its flanking region was determined. The cybB gene comprises 525 nucleotides and encodes a 175 amino acid polypeptide with a molecular weight of 20160. From its deduced amino acid sequence, cytochrome b 561 is predicted to be very hydrophobic (polarity 33.7%) and to have three membrane spanning regions. Histidines, canonical ligand residues for protohemes, are localized in these regions, and the heme pockets are thought to be in the cytoplasmic membrane. No significant homology of the primary structure of cytochrome b 561 with those of other bacterial b-type cytochromes was observed.  相似文献   
115.
Effects of K-252a, (8R*, 9S*, 11S*)-(-)-9-hydroxy-9-methoxycarbonyl-8-methyl-2,3,9,10-tetrahydro-8, 11-epoxy-1H,8H,11H-2,7b,11a-triazadibenzo[a,g]cycloocta [cde]trinden-1-one, purified from the culture broth of Nocardiopsis sp., on the activity of myosin light chain kinase were investigated. 1) K-252a (1 x 10(-5) M) affected three characteristic properties of chicken gizzard myosin-B, natural actomyosin, to a similar degree: the Ca2+-dependent activity of ATPase, superprecipitation, and the phosphorylation of the myosin light chain. 2) K-252a inhibited the activities of the purified myosin light chain kinase and a Ca2+-independent form of the enzyme which was constructed by cross-linking of myosin light chain kinase and calmodulin using glutaraldehyde. The degrees of inhibition by 3 x 10(-6) M K-252a were 69 and 48% of the control activities with the purified enzyme and the cross-linked complex, respectively. Chlorpromazine (3 x 10(-4) M), a calmodulin antagonist, inhibited the native enzyme, but not the cross-linked one. These results suggested that K-252a inhibited myosin light chain kinase by direct interaction with the enzyme, whereas chlorpromazine suppressed the enzyme activation by interacting with calmodulin. 3) The inhibition by K-252a of the cross-linked kinase was affected by the concentration of ATP, a phosphate donor. The concentration causing 50% inhibition was two orders magnitude lower in the presence of 100 microM ATP than in the presence of 2 mM ATP. 4) Kinetic analyses using [gama-32P]ATP indicated that the inhibitory mode of K-252a was competitive with respect to ATP (Ki = 20 nM). These results suggest that K-252a interacts at the ATP-binding domain of myosin light chain kinase. The direct action of the compound on the enzyme would explain the multivarious inhibition of myosin ATPase, of superprecipitation, and of the contractile response of smooth muscle.  相似文献   
116.
The granulosa cell secretes a protein (follicle regulatory protein: FRP) that affects the responsiveness of other follicles to gonadotropin stimulation. This protein was purified, partially characterized, and rabbit antisera as well as monoclonal antibodies were prepared against FRP. Fixed sections of porcine ovaries were prepared on slides and then incubated with the monoclonal antibody or polyclonal antisera and then incubated with either biotinylated mouse IgM or rabbit IgG antisera, respectively. These sections were then incubated with avidin conjugated to horseradish peroxidase, followed by substrate. Staining with both the monoclonal antibody and the antisera was present in the cytoplasm of granulosa cells of small- or medium-sized antral follicles. Staining distribution was localized preferentially to cells near the basal lamina; the antral granulosa cells of viable follicles did not stain. Neither primordial follicles nor pre-antral follicles (less than 300 microns in diameter) showed any positive staining. Thecal cells were not stained in follicles less than 5 mm in diameter, whereas some large follicles (greater than 5 mm) contained staining in the theca. In the latter, specific granulosa staining was only weakly positive with the polyclonal antibody and negative with the monoclonal antibody. Atretic follicles contained significant staining of all epithelial cells adjacent to the basal lamina by both the monoclonal and polyclonal antibody preparations. Staining of the luteal ovary by the monoclonal antibody was limited to the large luteal cells. These findings suggest that FRP is produced by the granulosa cells of porcine follicles at the stage of maturation corresponding to 0.5 mm in diameter. As the viable follicle increases in size, production of FRP in the granulosa is reduced below the detectable level when the follicle exceeds 5 mm in diameter. The main source of FRP during the luteal phase is the large cell of the corpus luteum.  相似文献   
117.
Twelve loci form a continuous linkage map for human chromosome 18   总被引:7,自引:0,他引:7  
We have constructed a primary genetic map of human chromosome 18 consisting of 11 DNA markers and one serological marker (JK). Two of these loci define highly polymorphic VNTR systems. The markers define a continuous genetic linkage map of 97 cM in males and 205 cM in females; female genetic distances in a panel of 59 three-generation families were consistently about twice those observed in males. The high odds in support of the linear order of the markers on this recombination map, and the extent of coverage of chromosome 18, indicate that this map will permit efficient linkage studies of human genetic diseases that may be segregating on chromosome 18 and will provide anchor points for development of high-resolution maps for this chromosome.  相似文献   
118.
119.
120.
The blood clamBarbatia virescens has a heterodimeric hemoglobin in erythrocytes. Interestingly, the congeneric clamsB. reeveana andB. lima contain quite different hemoglobins: tetramer and polymeric hemoglobin consisting of unusual didomain chain. The complete amino acid sequence of chain I ofB. virescens has been determined. The sequence was mainly determined from CNBr peptides and their subpeptides, and the alignment of the peptides was confirmed by sequencing of PCR-amplified cDNA forB. virescens chain I. The cDNA-derived amino acid sequence matched completely with the sequence proposed from protein sequencing.B. virescens chain I is composed of 156 amino acid residues, and the molecular mass was calculated to be 18,387 D, including a heme group. The sequence ofB. virescens chain I showed 35–42% sequence identity with those of the related clamAnadara trapezia and the congeneric clamB. reeveana. An evolutionary tree forAnadara andBarbatia chains clearly indicates that all of the chains are evolved from one ancestral globin gene, and that the divergence of chains has occurred in each clam after the speciation. The evolutionary rate for clam hemoglobins was estimated to be about four times faster than that of vertebrate hemoglobin. We suggest that blood clam hemoglobin is a physiologically less important molecule when compared with vertebrate hemoglobins, and so it evolved rapidly and resulted in a remarkable diversity in quaternary and subunit structure within a relatively short period.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号