首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4110篇
  免费   283篇
  国内免费   11篇
  4404篇
  2023年   11篇
  2022年   17篇
  2021年   51篇
  2020年   24篇
  2019年   24篇
  2018年   48篇
  2017年   28篇
  2016年   67篇
  2015年   121篇
  2014年   148篇
  2013年   224篇
  2012年   255篇
  2011年   253篇
  2010年   148篇
  2009年   164篇
  2008年   259篇
  2007年   273篇
  2006年   285篇
  2005年   274篇
  2004年   334篇
  2003年   271篇
  2002年   248篇
  2001年   61篇
  2000年   64篇
  1999年   75篇
  1998年   61篇
  1997年   43篇
  1996年   31篇
  1995年   37篇
  1994年   36篇
  1993年   36篇
  1992年   40篇
  1991年   40篇
  1990年   36篇
  1989年   39篇
  1988年   41篇
  1987年   18篇
  1986年   25篇
  1985年   18篇
  1984年   18篇
  1983年   14篇
  1982年   18篇
  1981年   15篇
  1980年   19篇
  1979年   12篇
  1978年   11篇
  1977年   9篇
  1975年   8篇
  1974年   12篇
  1970年   8篇
排序方式: 共有4404条查询结果,搜索用时 0 毫秒
31.
The Rab3 small G protein family consists of four members, Rab3A, -3B, -3C, and -3D. Of these members, Rab3A regulates Ca(2+)-dependent neurotransmitter release. These small G proteins are activated by Rab3 GDP/GTP exchange protein (Rab3 GEP). To determine the function of Rab3 GEP during neurotransmitter release, we have knocked out Rab3 GEP in mice. Rab3 GEP-/- mice developed normally but died immediately after birth. Embryos at E18.5 showed no evoked action potentials of the diaphragm and gastrocnemius muscles in response to electrical stimulation of the phrenic and sciatic nerves, respectively. In contrast, axonal conduction of the spinal cord and the phrenic nerve was not impaired. Total numbers of synaptic vesicles, especially those docked at the presynaptic plasma membrane, were reduced at the neuromuscular junction approximately 10-fold compared with controls, whereas postsynaptic structures and functions appeared normal. Thus, Rab3 GEP is essential for neurotransmitter release and probably for formation and trafficking of the synaptic vesicles.  相似文献   
32.
Targeting pathogenic T cells with Ag-specific tolerizing DNA vaccines encoding autoantigens is a powerful and feasible therapeutic strategy for Th1-mediated autoimmune diseases. However, plasmid DNA contains abundant unmethylated CpG motifs, which induce a strong Th1 immune response. We describe here a novel approach to counteract this undesired side effect of plasmid DNA used for vaccination in Th1-mediated autoimmune diseases. In chronic relapsing experimental autoimmune encephalomyelitis (EAE), combining a myelin cocktail plus IL-4-tolerizing DNA vaccine with a suppressive GpG oligodeoxynucleotide (GpG-ODN) induced a shift of the autoreactive T cell response toward a protective Th2 cytokine pattern. Myelin microarrays demonstrate that tolerizing DNA vaccination plus GpG-ODN further decreased anti-myelin autoantibody epitope spreading and shifted the autoreactive B cell response to a protective IgG1 isotype. Moreover, the addition of GpG-ODN to tolerizing DNA vaccination therapy effectively reduced overall mean disease severity in both the chronic relapsing EAE and chronic progressive EAE mouse models. In conclusion, suppressive GpG-ODN effectively counteracted the undesired CpG-induced inflammatory effect of a tolerizing DNA vaccine in a Th1-mediated autoimmune disease by skewing both the autoaggressive T cell and B cell responses toward a protective Th2 phenotype. These results demonstrate that suppressive GpG-ODN is a simple and highly effective novel therapeutic adjuvant that will boost the efficacy of Ag-specific tolerizing DNA vaccines used for treating Th1-mediated autoimmune diseases.  相似文献   
33.
The importance of the 2′-hydroxyl and 2-amino groups of guanosine residues for the catalytic efficiency of a hammerhead ribozyme has been investigated. The three guanosines in the central core of a hammerhead ribozyme were replaced by deoxyinosine, inosine, and deoxyguanosine, and ribozymes containing these analogues were chemically synthesized. Most of the modified ribozymes are drastically descreased in their cleavage efficiency. However. deletion of the 2-amino group at G8 (replacement with inosine, deoxyguanosine, deoxyinosine) caused little alteration in the catalytic activity relative to that obtained with the unmodified ribozyme. Whereas, deletion of the 2′-amino group at G12 and G5 (replacement with inosine, deoxyinosine, and deoxyguanosine) resulted in ribozymes with drastic decrease in the catalytic activity relative to that obtained with the unmodified ribozyme. In contrast, two uridine residues, U7 and U4, in the ribozyne sequence were replaced by deoxyuridine (dU). The dU4 complex resulted in a decrease in the catalytic rate, with relative cleavage activity that ws about half that observed for the native complex. By comparison, the dU7 complex exhibited a relative cleavage activity within 3.3-fold of that observed with native ribozyme/substrate complex. This result suggests that the 2′-hydroxyl group at U 7 is not essential for activity.

The importance of the 2′-hydroxyl, and 2-amino groups of guanosine residues for the catalytic efficiency of a hammerhead roibozyme has been investigated. Most of the modified rybozymes are drastically decreased in their cleavage efficiency. However, deletion of the 2-amino group at G8 or deletion of the 2′-hydroxyl group at G12 caused little alteration in the catalytic activity relative to that obtained with the unmodified ribozyme. In contrast, two uridine residues, U7 and U4, in the ribozyme sequence were replaced by deoxyuridine (dU). The U4 complex resulted in a decrease in the catalytic rate, with relative cleavage activity that was about half that observed for the native complex.  相似文献   

34.
The repair of large cartilage defects with hyaline cartilage continues to be a challenging clinical issue. We recently reported that the forced expression of two reprogramming factors (c-Myc and Klf4) and one chondrogenic factor (SOX9) can induce chondrogenic cells from mouse dermal fibroblast culture without going through a pluripotent state. We here generated induced chondrogenic (iChon) cells from human dermal fibroblast (HDF) culture with the same factors. We developed a chondrocyte-specific COL11A2 promoter/enhancer lentiviral reporter vector to select iChon cells. The human iChon cells expressed marker genes for chondrocytes but not fibroblasts, and were derived from non-chondrogenic COL11A2-negative cells. The human iChon cells formed cartilage but not tumors in nude mice. This approach could lead to the preparation of cartilage directly from skin in human, without going through pluripotent stem cells.  相似文献   
35.

Background

Materials with excellent biocompatibility on interfaces between artificial system and biological system are needed to develop any equipments and devices in bioscience, bioengineering and medicinal science. Suppression of unfavorable biological response on the interface is most important for understanding real functions of biomolecules on the surface. So, we should design and prepare such biomaterials.

Scoop of review

One of the best ways to design the biomaterials is generated from mimicking a cell membrane structure. It is composed of a phospholipid bilayered membrane and embedded proteins and polysaccharides. The surface of the cell membrane-like structure is constructed artificially by molecular integration of phospholipid polymer as platform and conjugated biomolecules. Here, it is introduced as the effectiveness of biointerface with highly biological functions observed on artificial cell membrane structure.

Major conclusions

Reduction of nonspecific protein adsorption is essential for suppression of unfavorable bioresponse and achievement of versatile biomedical applications. Simultaneously, bioconjugation of biomolecules on the phospholipid polymer platform is crucial for a high-performance interface.

General significance

The biointerfaces with both biocompatibility and biofunctionality based on biomolecules must be installed on advanced devices, which are applied in the fields of nanobioscience and nanomedicine.This article is part of a Special Issue entitled Nanotechnologies - Emerging Applications in Biomedicine.  相似文献   
36.
In recent years, the effects of smoking and excessive alcohol consumption on immune function have been studied, due to a high prevalence of infection or cancer in heavy drinkers, and the combination of smoking and drinking was considered to be a carcinogenic risk. However, the effect of smoking and drinking on systemic immune function has yet to be clearly understood. In this study, we investigated neutrophil functions (reactive oxygen species (ROS) productive activity, phagocytic ability and serum opsonic activity) and their relationship with alcohol consumption or amount of smoking. In total there were 731 male and female adult subjects who participated in the Iwaki Health Promotion Project in 2005. Multiple regression analysis showed a trend of increased ROS production in male subjects and a statistically significant decrease was observed in phagocytic activity caused by smoking in female subjects. In other words, oxidative stress caused by smoking in male subjects may be involved in ROS production from neutrophils. Decreased phagocytic activity of neutrophils caused by smoking suggests that host defense functions were impaired in female subjects. A relationship between neutrophil functions and the amount of alcohol consumption was not observed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
37.
Advances in soil microbial ecology and the biodiversity   总被引:3,自引:0,他引:3  
Recent studies on the colony formation of soil bacteria opened the way to categorize soil bacteria into colony forming curve (CFC) groups of different growth rates. A bacterial culture collection comprising organisms from every CFC group is called an ecocollection. Outlines of ECs of paddy soil 1992 and grassland soil 1987 and 1992 were described. Phylogenetic studies by 16S rDNA sequencing showed a great diversity of culture strains of the ecocollections (EC). A set of alternative concepts was proposed; the active and the quiescent forms of bacterial cells in soil. The former is able to be cultivated and thus counted by the plate method, while the latter is not unless it transforms into the former. Based on the results several points required for extensive cataloguing of soil bacteria were noted.  相似文献   
38.
Activation of the non-phagocytic superoxide-producing NADPH oxidase Nox1, complexed with p22(phox) at the membrane, requires its regulatory soluble proteins Noxo1 and Noxa1. However, the role of the small GTPase Rac remained to be clarified. Here we show that Rac directly participates in Nox1 activation via interacting with Noxa1. Electropermeabilized HeLa cells, ectopically expressing Nox1, Noxo1, and Noxa1, produce superoxide in a GTP-dependent manner, which is abrogated by expression of a mutant Noxa1(R103E), defective in Rac binding. Superoxide production in Nox1-expressing HeLa and Caco-2 cells is decreased by depletion or sequestration of Rac; on the other hand, it is enhanced by expression of the constitutively active Rac1(Q61L), but not by that of a mutant Rac1 with the A27K substitution, deficient in binding to Noxa1. We also demonstrate that Nox1 activation requires membrane recruitment of Noxa1, which is normally mediated via Noxa1 binding to Noxo1, a protein tethered to the Nox1 partner p22(phox): the Noxa1-Noxo1 and Noxo1-p22(phox) interactions are both essential for Nox1 activity. Rac likely facilitates the membrane localization of Noxa1: although Noxa1(W436R), defective in Noxo1 binding, neither associates with the membrane nor activates Nox1, the effects of the W436R substitution are restored by expression of Rac1(Q61L). The Rac-Noxa1 interaction also serves at a step different from the Noxa1 localization, because the binding-defective Noxa1(R103E), albeit targeted to the membrane, does not support superoxide production by Nox1. Furthermore, a mutant Noxa1 carrying the substitution of Ala for Val-205 in the activation domain, which is expected to undergo a conformational change upon Rac binding, fully localizes to the membrane but fails to activate Nox1.  相似文献   
39.
Chaperonin GroEL is an essential molecular chaperone that assists protein folding in the cell. With the aid of cochaperonin GroES and ATP, double ring-shaped GroEL encapsulates non-native substrate proteins inside the cavity of the GroEL-ES complex. Although extensive studies have revealed the outline of GroEL mechanism over the past decade, central questions remain: What are the in vivo substrate proteins? How does GroEL encapsulate the substrates inside the cavity in spite of an apparent entropic difficulty? Is the folding inside the GroEL-ES cavity the same as bulk spontaneous folding? In this review I summarize the recent progress on in vivo and in vitro aspects of GroEL. In particular, emerging evidence shows that the substrate protein itself influences the chaperonin GroEL structure and reaction cycle. Finally I propose the mechanistic similarity between GroEL and kinesin, a molecular motor that moves along a microtubule in an ATP-dependent manner.  相似文献   
40.
Chromatin-enriched noncoding RNAs (ncRNAs) have emerged as key molecules in epigenetic processes by interacting with chromatin-associated proteins. Recently, protein-coding mRNA genes have been reported to be chromatin-tethered, similar with ncRNA. However, very little is known about whether chromatin-enriched mRNA is involved in the chromatin modification process. Here, we comprehensively examined chromatin-enriched RNA in squamous cell carcinoma (SQCC) cells by RNA subcellular localization analysis, which was a combination of RNA fractionation and RNA-seq. We identified 11 mRNAs as highly chromatin-enriched RNAs. Among these, we focused on the dentin matrix protein-1 (DMP-1) gene because its expression in SQCC cells has not been reported. Furthermore, we clarified that DMP-1 mRNA was retained in chromatin in its unspliced form in SQCC in vitro and in vivo. As the inhibition of the unspliced DMP-1 mRNA (unspDMP-1) expression resulted in decreased cellular proliferation in SQCC cells, we performed ChIP-qPCR to identify cell cycle-related genes whose expression was epigenetically modified by unspDMP-1, and found that the CDKN1B promoter became active in SQCC cells by inhibiting unspDMP-1 expression. This result was further validated by the increased CDKN1B gene expression in the cells treated with siRNA for unspDMP-1 and by restoration of the decreased cellular proliferation rate by simultaneously inhibiting CDKN1B expression in SQCC cells. Further, to examine whether unspDMP-1 was able to associate with the CDKN1B promoter region, SQCC cells stably expressing PP7-mCherry fusion protein were transiently transfected with the unspDMP-1 fused to 24 repeats of the PP7 RNA stem loop (unspDMP-1-24xPP7) and we found that unspDMP-1-24xPP7 was efficiently precipitated with the antibody against mCherry and was significantly enriched in the CDKN1B promoter region. Thus, unspDMP-1 is a novel chromatin-enriched RNA that epigenetically regulates cellular proliferation of SQCC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号