首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3283篇
  免费   196篇
  国内免费   11篇
  2023年   6篇
  2022年   13篇
  2021年   51篇
  2020年   22篇
  2019年   23篇
  2018年   41篇
  2017年   26篇
  2016年   57篇
  2015年   104篇
  2014年   130篇
  2013年   192篇
  2012年   227篇
  2011年   222篇
  2010年   135篇
  2009年   146篇
  2008年   226篇
  2007年   228篇
  2006年   240篇
  2005年   239篇
  2004年   291篇
  2003年   232篇
  2002年   211篇
  2001年   25篇
  2000年   17篇
  1999年   30篇
  1998年   48篇
  1997年   31篇
  1996年   20篇
  1995年   28篇
  1994年   28篇
  1993年   31篇
  1992年   13篇
  1991年   16篇
  1990年   10篇
  1989年   17篇
  1988年   13篇
  1987年   7篇
  1986年   8篇
  1985年   7篇
  1984年   10篇
  1983年   7篇
  1982年   12篇
  1981年   11篇
  1980年   11篇
  1979年   3篇
  1978年   5篇
  1976年   4篇
  1975年   3篇
  1974年   3篇
  1969年   2篇
排序方式: 共有3490条查询结果,搜索用时 406 毫秒
151.
The apoptotic activities of non-natural ceramide homologues, C2-homo-ceramide, C2-homo-dihydroceramide, C2-bishomo-ceramide and C2-bishomo-dihydroceramide, were examined using human leukemia HL-60 cells. The apoptotic activity was in order of C2-ceramide>C2-homo-ceramide approximately C2-bishomo-ceramide and the activities of the L-erythro- and D-erythro-ceramide homologues were similar. The morphological features of the cells, DNA fragmentations, proteolytic processing of pro-caspase-3 and the cleavage of PARP as the result of treatments with these homologues indicated that cell death was induced by apoptosis.  相似文献   
152.
The membrane-integrated protein gp91phox, existing as a heterodimer with p22phox, functions as the catalytic core of the phagocyte NADPH oxidase, which plays a crucial role in host defence. The oxidase, dormant in resting cells, becomes activated to produce superoxide, a precursor of microbicidal oxidants, by interacting with the adaptor proteins p47phox and p67phox as well as the small GTPase Rac. In the past few years, several proteins homologous to gp91phox were discovered as superoxide-producing NAD(P)H oxidases (Nox's) in non-phagocytic cells; however, regulatory mechanisms for the novel oxidases have been largely unknown. Current identification of proteins highly related to p47phox and p67phox, designated Noxol (Nox organizer 1) and Noxal (Nox activator 1), respectively, has shed lights on common and distinct mechanisms underlying activations of Nox family oxidases.  相似文献   
153.
In vivo post-ovulatory aging of oocytes significantly affects the development of oocytes and embryos. Also, oocyte aging alters the regulation of the intracellular calcium concentration, thus affecting Ca(2+) oscillations in fertilized oocytes. Because reactive oxygen species (ROS) are known to significantly perturb Ca(2+) homeostasis mainly through direct effects on the machinery involved in intracellular Ca(2+) storage, we hypothesized that the poor development of aged oocytes that may have been exposed to oxidative stress for a prolonged time might arise from impaired Ca(2+)-oscillation-dependent signaling. The fertilization rates of aged oocytes and of fresh oocytes treated with 100 microM hydrogen peroxide (H(2)O(2)) for 10 min were significantly lower than that of fresh oocytes. Comparing within the fertilized oocytes, blastocyst formation was decreased while embryo fragmentation was increased similarly in the aged and H(2)O(2)-treated fresh oocytes. The frequency of Ca(2+) oscillations was significantly increased whereas the amplitude of individual Ca(2+) transients was lowered in the aged and H(2)O(2)-treated fresh oocytes. The rates of rise and decline in individual Ca(2+) transients were decreased in these oocytes, indicating impaired Ca(2+) handling. When lipid peroxidation was assessed using 4,4-difluoro-5-(4-phenyl-1,3-buttadienyl)-4-bora-3a, 4a-diaza-s-indacene-3-undecanoic acid (C11-BODIPY) in unfertilized oocytes placed in a 5% CO(2) in air atmosphere, the green fluorescence (indicating lipid peroxidation) increased faster in the aged oocytes than in the fresh oocytes. Furthermore, the green fluorescence in the aged oocytes was already approximately 20 times higher than that in the fresh oocytes at the beginning of the measurements. These findings support the idea that Ca(2+) oscillations play a key role in the development of fertilized aged oocytes.  相似文献   
154.
We produced and characterized a cell clone (J12#26 cells) that stably expresses Japanese encephalitis virus (JEV) cDNA, J12, which encodes the viral signal peptide, premembrane (prM), and envelope (E) proteins (amino acid positions 105 to 794). Rabbit kidney-derived RK13 cells were transfected with a J12 expression plasmid, selected by resistance to marker antibiotics, and cloned by two cycles of a limiting-dilution method in the presence of antibiotics, a procedure that prevents the successful generation of E-producing cell clones. J12#26 cells secreted virus-like particles containing the authentic E antigen (E-VLP) into the culture medium in a huge enzyme-linked immunosorbent assay-equivalent amount (2.5 micro g per 10(4) cells) to the internationally licensed JE vaccine JE-VAX. E-VLP production was stable after multiple cell passages and persisted over 1 year with 100% expressing cells without detectable cell fusion, apoptosis, or cell death, but was suspended when the cells grew to 100% confluency and contact inhibition occurred. Mice immunized with the purified J12#26 E-antigen without adjuvant developed high titers of neutralizing antibodies for at least 7 months and 100% protection against intraperitoneal challenge with 5 x 10(6) PFU of JEV when examined according to the JE vaccine standardization protocol. These results suggest that the recombinant E-VLP antigen produced by the J12#26 cell clone is an effective, safe, and low-cost second-generation subunit JE vaccine.  相似文献   
155.
156.
The [URE3] phenotype in Saccharomyces cerevisiae propagates by a prion mechanism, involving the aggregation of the normally soluble and highly helical protein Ure2. Previous data have shown that the protein spontaneously forms in vitro long, straight, insoluble fibrils at neutral pH that are similar to amyloids in that they bind Congo red and show green-yellow birefringence and have an increased resistance to proteolysis. These fibrils are not amyloids as they are devoid of a cross-beta core. Here we further document the mechanism of assembly of Ure2p into fibrils. The critical concentration for Ure2p assembly is measured, and the minimal size of the nuclei that are the precursors of Ure2p fibrils is determined. Our data indicate that the assembly process is irreversible. As a consequence, the critical concentration is very low. By analyzing the elongation rates of preformed fibrils and combining the results with single-fiber imaging experiments of a variant Ure2p labeled by fluorescent dyes, we reveal the polarity of the fibrils and differences in the elongation rates at their ends. These results bring novel insight in the process of Ure2p assembly into fibrils and the mechanism of propagation of yeast prions.  相似文献   
157.
The Helicobacter pylori-produced cytotoxin VacA induces intracellular vacuolation. The formed vacuole is assumed to be a hybrid of late endosome and lysosome. To elucidate the molecular mechanism of VacA-induced vacuolation, we examined the participation of syntaxin 7 in the human gastric epithelial cell line AGS. Immunocytochemistry revealed that endogenous syntaxin 7 was localized to vacuoles induced by VacA. Northern and Western blotting demonstrated that VacA intoxication increased syntaxin 7 mRNA and protein expression, respectively, in a time-dependent manner. Transient transfection of dominant-negative mutant syntaxin 7, which lacks a carboxyl-terminal transmembrane domain, inhibited VacA-induced vacuolation. In contrast, transient transfection of wild-type syntaxin 7, dominant-negative mutant syntaxin 1a, or dominant-negative mutant syntaxin 4 did not alter VacA-induced vacuolation. Furthermore, under VacA treatment, neutral red dye uptake, a parameter of VacA-induced vacuolation, was inhibited in cells stably transfected with mutant syntaxin 7 but not in cells stably transfected with wild-type syntaxin 7, mutant syntaxin 1a, or mutant syntaxin 4. Sequential immunocytochemical observation confirmed that expression of mutant syntaxin 7 did not affect VacA attachment to or internalization into AGS cells. We suggest that syntaxin 7 is involved in the intracellular vacuolation induced by VacA.  相似文献   
158.
It has long been recognized that magnesium is associated with several important diseases, including diabetes, hypertension, cardiovascular, and cerebrovascular diseases. In the present study, we measured the intracellular free Mg2+ concentration ([Mg2+]i) using 31P nuclear magnetic resonance (NMR) in pig carotid artery smooth muscle. In normal solution, application of amiloride (1 mm) decreased [Mg2+]i by approximately 12% after 100 min. Subsequent washout tended to further decrease [Mg2+]i. In contrast, application of amiloride significantly increased [Mg2+]i (by approximately 13% after 100 min) under Ca2+-free conditions, where passive Mg2+ influx is facilitated. The treatments had little effect on intracellular ATP and pH (pHi). Essentially the same Ca2+-dependent changes in [Mg2+]i were produced with KB-R7943, a selective blocker of reverse mode Na+-Ca2+ exchange. Application of dimethyl amiloride (0.1 mM) in the presence of Ca2+ did not significantly change [Mg2+]i, although it inhibited Na+-H+ exchange at the same concentration. Removal of extracellular Na+ caused a marginal increase in [Mg2+]i after 100-200 min, as seen in intestinal smooth muscle in which Na+-Mg2+ exchange is known to be the primary mechanism of maintaining a low [Mg2+]i against electrochemical equilibrium. In Na+-free solution (containing Ca2+), neither amiloride nor KB-R7943 decreased [Mg2+]i, but they rather increased it. The results suggest that these inhibitory drugs for Na+-Ca2+ exchange directly modulate Na+-Mg2+ exchange in a Ca2+-dependent manner, and consequently produce the paradoxical decrease in [Mg2+]i in the presence of Ca2+.  相似文献   
159.
Membrane glycoproteins of neural cells play crucial roles in axon guidance, synaptogenesis, and neuronal transmission. We have here characterized membrane glycoproteins containing terminal alpha-mannose residues in rat brain membranes. Affinity purification using Galanthus nivalis agglutinin, that is highly specific for terminal alpha-mannose residues, revealed a 50-kDa protein as well as 80-kDa SHPS-1 and 45-kDa beta2 subunit of Na,K-ATPase in rat brain membranes. Combination of N-terminal peptide sequencing and mass spectrometry indicated that the 50-kDa protein was rat nucleotide pyrophosphatase-5 (NPP-5). In contrast to other NPPs, NPP-5 was a type-I transmembrane protein. Northern blot analysis showed that NPP-5 was highly expressed in brain, but also expressed in other peripheral tissues. However, we could not detect either the NPP activity or the lysophospholipase D activity in the immunoprecipitates with antibodies to NPP-5 from rat brain membranes. These data, therefore, suggest that NPP-5 is a neural oligomannosidic glycoprotein that may participate in neural cell communications.  相似文献   
160.
Gliclazide protects pancreatic beta-cells from damage by hydrogen peroxide   总被引:11,自引:0,他引:11  
Oxidative stress is induced under diabetic conditions and possibly causes various forms of tissue damage in patients with diabetes. Recently, it has become aware that susceptibility of pancreatic beta-cells to oxidative stress contributes to the progressive deterioration of beta-cell function in type 2 diabetes. A hypoglycemic sulfonylurea, gliclazide, is known to be a general free radical scavenger and its beneficial effects on diabetic complications have been documented. In the present study, we investigated whether gliclazide could protect pancreatic beta-cells from oxidative damage. One hundred and fifty microM hydrogen peroxide reduced viability of mouse MIN6 beta-cells to 29.3%. Addition of 2 microM gliclazide protected MIN6 cells from the cell death induced by H(2)O(2) to 55.9%. Glibenclamide, another widely used sulfonylurea, had no significant effects even at 10 microM. Nuclear chromatin staining analysis revealed that the preserved viability by gliclazide was due to inhibition of apoptosis. Hydrogen peroxide-induced expression of an anti-oxidative gene heme oxygenase-1 and stress genes A20 and p21(CIP1/WAF1), whose induction was suppressed by gliclazide. These results suggest that gliclazide reduces oxidative stress of beta-cells by H(2)O(2) probably due to its radical scavenging activity. Gliclazide may be effective in preventing beta-cells from the toxic action of reactive oxygen species in diabetes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号