首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   575篇
  免费   29篇
  国内免费   1篇
  2023年   4篇
  2022年   3篇
  2021年   9篇
  2020年   4篇
  2019年   4篇
  2018年   12篇
  2017年   7篇
  2016年   10篇
  2015年   16篇
  2014年   16篇
  2013年   28篇
  2012年   52篇
  2011年   42篇
  2010年   20篇
  2009年   27篇
  2008年   28篇
  2007年   38篇
  2006年   18篇
  2005年   39篇
  2004年   43篇
  2003年   31篇
  2002年   33篇
  2001年   10篇
  2000年   7篇
  1999年   10篇
  1998年   6篇
  1997年   7篇
  1996年   4篇
  1995年   6篇
  1994年   5篇
  1993年   2篇
  1992年   6篇
  1991年   12篇
  1990年   11篇
  1989年   6篇
  1988年   1篇
  1987年   4篇
  1986年   5篇
  1984年   4篇
  1983年   2篇
  1981年   4篇
  1980年   1篇
  1979年   4篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有605条查询结果,搜索用时 296 毫秒
61.
Located within the perisinusoidal space and surrounded by extracellular matrix, hepatic stellate cells (HSC) undergo phenotypic trans-differentiation called "myofibroblastic activation" in liver fibrogenesis. This study investigated the regulation of interleukin-1 (IL-1alpha) on expression of matrix metalloproteinases (MMPs) by HSC grown in three-dimensional extracellular matrix and the role of MMPs in HSC activation. To recapitulate the in vivo "quiescent" state of HSC, the isolated rat HSC were grown in three-dimensional Matrigel or type I collagen. Stimulation with IL-1alpha caused robust induction of pro-MMP-9 (the precursor of matrix metalloproteinase-9) when HSC were cultured in these matrices. IL-1alpha induced a conversion of the pro-MMP-9 to the active form only when the cells were in type I collagen. In collagen lattices, IL-1alpha provoked activation of HSC with induction of MMP-13, MMP-3, and breakdown of the matrix. The HSC activation was completely prevented by a treatment of the cells with tissue inhibitor of metalloproteinase-1 or deprivation of MMP-9. Once fully activated, HSC failed to express MMP-9 and showed attenuated induction of MMP-13 and MMP-3. Further, we demonstrated colocalization of alpha-smooth muscle actin and MMP-9 in a subpopulation of HSC in human fibrotic liver tissues. Thus, this study provides a novel model to enlighten the role of MMPs, particularly that of MMP-9, in HSC activation regulated by a specific cytokine in liver fibrogenesis.  相似文献   
62.
63.
Endothelin (ET)-1 and ET-2 are potent vasoconstrictor peptides with mitogenic activity. In this study, we investigated roles of ET system in renin-angiotensin system (RAS)-mediated hypertension, using transgenic hypertensive mice (THM) with over-expression of both human renin and angiotensinogen genes. In the first step, it was revealed that expression of ET system was locally enhanced, i.e. increases in cardiac preproET-1 mRNA and renal preproET-2 mRNA in THM, compared with the control (wild type) mice. In the next step, we studied the chronic effects of an ET antagonist (SB209670) on THM. Blood pressure (BP) in THM was significantly higher than that in the normal mice during the investigation. However, in the later phase of the study, from 12 to 20 weeks of treatment, THM receiving SB 209670 showed significantly lower BP than that in THM receiving saline. SB 209670 treatment for 20 weeks significantly attenuated phenotypes of cardiac hypertrophy, vascular wall thickening and hypertensive nephropathy observed in THM, suggesting that the ETA/B receptor antagonist is also effective even in the extraordinarily activated RAS condition. These findings suggest that organ specifically activated ET system in THM develops the phenotypes, hypertension, cardiac hypertrophy, and hypertensive nephropathy.  相似文献   
64.
PEX1 is a type II AAA-ATPase that is indispensable for biogenesis and maintenance of the peroxisome, an organelle responsible for the primary metabolism of lipids, such as beta-oxidation and lipid biosynthesis. Recently, we demonstrated a striking structural similarity between its N-terminal domain and those of other membrane-related AAA-ATPases, such as valosine-containing protein (p97). The N-terminal domain of valosine-containing protein serves as an interface to its adaptor proteins p47 and Ufd1, whereas the physiologic interaction partner of the N-terminal domain of PEX1 remains unknown. Here we found that N-terminal domains isolated from valosine-containing protein, as well as from PEX1, bind phosphoinositides. The N-terminal domain of PEX1 appears to preferentially bind phosphatidylinositol 3-monophosphate and phosphatidylinositol 4-monophosphate, whereas the N-terminal domain of valosine-containing protein displays broad and nonspecific lipid binding. Although N-ethylmaleimide-sensitive fusion protein, CDC48 and Ufd1 have structures similar to that of valosine-containing protein, they displayed lipid specificity similar to that of the N-terminal domain of PEX1 in the assays. By mutational analysis, we demonstrate that a conserved arginine surrounded by hydrophobic residues is essential for lipid binding, despite very low sequence similarity between PEX1 and valosine-containing protein.  相似文献   
65.
We identified a novel prostaglandin (PG)-specific organic anion transporter (OAT) in the OAT group of the SLC22 family. The transporter designated OAT-PG from mouse kidney exhibited Na+-independent and saturable transport of PGE2 when expressed in a proximal tubule cell line (S2). Unusual for OAT members, OAT-PG showed narrow substrate selectivity and high affinity for a specific subset of PGs, including PGE2, PGF, and PGD2. Similar to PGE2 receptor and PGT, a structurally distinct PG transporter, OAT-PG requires for its substrates an α-carboxyl group, with a double bond between C13 and C14 as well as a (S)-hydroxyl group at C15. Unlike the PGE2 receptor, however, the hydroxyl group at C11 in a cyclopentane ring is not essential for OAT-PG substrates. Addition of a hydroxyl group at C19 or C20 impairs the interaction with OAT-PG, whereas an ethyl group at C20 enhances the interaction, suggesting the importance of hydrophobicity around the ω-tail tip forming a “hydrophobic core” accompanied by a negative charge, which is essential for substrates of OAT members. OAT-PG-mediated transport is concentrative in nature, although OAT-PG mediates both facilitative and exchange transport. OAT-PG is kidney-specific and localized on the basolateral membrane of proximal tubules where a PG-inactivating enzyme, 15-hydroxyprostaglandin dehydrogenase, is expressed. Because of the fact that 15-keto-PGE2, the metabolite of PGE2 produced by 15-hydroxyprostaglandin dehydrogenase, is not a substrate of OAT-PG, the transport-metabolism coupling would make unidirectional PGE2 transport more efficient. By removing extracellular PGE2, OAT-PG is proposed to be involved in the local PGE2 clearance and metabolism for the inactivation of PG signals in the kidney cortex.  相似文献   
66.
In higher eukaryotic cells, DNA molecules are present as chromatin fibers, complexes of DNA with various types of proteins; chromatin fibers are highly condensed in metaphase chromosomes during mitosis. Although the formation of the metaphase chromosome structure is essential for the equal segregation of replicated chromosomal DNA into the daughter cells, the mechanism involved in the organization of metaphase chromosomes is poorly understood. To identify proteins involved in the formation and/or maintenance of metaphase chromosomes, we examined proteins that dissociated from isolated human metaphase chromosomes by 0.4 m NaCl treatment; this treatment led to significant chromosome decondensation, but the structure retained the core histones. One of the proteins identified, HP1-BP74 (heterochromatin protein 1-binding protein 74), composed of 553 amino acid residues, was further characterized. HP1-BP74 middle region (BP74Md), composed of 178 amino acid residues (Lys97–Lys274), formed a chromatosome-like structure with reconstituted mononucleosomes and protected the linker DNA from micrococcal nuclease digestion by ∼25 bp. The solution structure determined by NMR revealed that the globular domain (Met153–Thr237) located within BP74Md possesses a structure similar to that of the globular domain of linker histones, which underlies its nucleosome binding properties. Moreover, we confirmed that BP74Md and full-length HP1-BP74 directly binds to HP1 (heterochromatin protein 1) and identified the exact sites responsible for this interaction. Thus, we discovered that HP1-BP74 directly binds to HP1, and its middle region associates with linker DNA at the entry/exit site of nucleosomal DNA in vitro.  相似文献   
67.
Versican/PG-M is a large chondroitin sulfate proteoglycan in the extracellular matrix, which is transiently expressed in mesenchymal condensation areas during tissue morphogenesis. Here, we generated versican conditional knock-out mice Prx1-Cre/Vcanflox/flox, in which Vcan is pruned out by site-specific Cre recombinase driven by the Prx1 promoter. Although Prx1-Cre/Vcanflox/flox mice are viable and fertile, they develop distorted digits. Histological analysis of newborn mice reveals hypertrophic chondrocytic nodules in cartilage, tilting of the joint, and a slight delay of chondrocyte differentiation in digits. By immunostaining, whereas the joint interzone of Prx1-Cre/Vcan+/+ shows an accumulation of TGF-β, concomitant with versican, that of Prx1-Cre/Vcanflox/flox without versican expression exhibits a decreased incorporation of TGF-β. In a micromass culture system of mesenchymal cells from limb bud, whereas TGF-β and versican are co-localized in the perinodular regions of developing cartilage in Prx1-Cre/Vcan+/+, TGF-β is widely distributed in Prx1-Cre/Vcanflox/flox. These results suggest that versican facilitates chondrogenesis and joint morphogenesis, by localizing TGF-β in the extracellular matrix and regulating its signaling.  相似文献   
68.
Modification of cellular proteins by the small ubiquitin-like modifier SUMO is important in regulating various cellular events. Many different nuclear proteins are targeted by SUMO, and the functional consequences of this modification are diverse. For most proteins, however, the functional and structural consequences of modification by specific SUMO isomers are unclear. Conjugation of SUMO to thymine-DNA glycosylase (TDG) induces the dissociation of TDG from its product DNA. Structure determination of the TDG central region conjugated to SUMO-1 previously suggested a mechanism in which the SUMOylation-induced conformational change in the C-terminal region of TDG releases TDG from tight binding to its product DNA. Here, we have determined the crystal structure of the central region of TDG conjugated to SUMO-3. The overall structure of SUMO-3-conjugated TDG is similar to the previously reported structure of TDG conjugated to SUMO-1, despite the relatively low level of amino acid sequence similarity between SUMO-3 and SUMO-1. The two structures revealed that the sequence of TDG that resembles the SUMO-binding motif (SBM) can form an intermolecular beta-sheet with either SUMO-1 or SUMO-3. Structural comparison with the canonical SBM shows that this SBM-like sequence of TDG retains all of the characteristic interactions of the SBM, indicating sequence diversity in the SBM.  相似文献   
69.
Regenerative therapies, including cell injection and bioengineered tissue transplantation, have the potential to treat severe heart failure. Direct implantation of isolated skeletal myoblasts and bone-marrow-derived cells has already been clinically performed and research on fabricating three-dimensional (3-D) cardiac grafts using tissue engineering technologies has also now been initiated. In contrast to conventional scaffold-based methods, we have proposed cell sheet-based tissue engineering, which involves stacking confluently cultured cell sheets to construct 3-D cell-dense tissues. Upon layering, individual cardiac cell sheets integrate to form a single, continuous, cell-dense tissue that resembles native cardiac tissue. The transplantation of layered cardiac cell sheets is able to repair damaged hearts. As the next step, we have attempted to promote neovascularization within bioengineered myocardial tissues to overcome the longstanding limitations of engineered tissue thickness. Finally, as a possible advanced therapy, we are now trying to fabricate functional myocardial tubes that may have a potential for circulatory support. Cell sheet-based tissue engineering technologies therefore show an enormous promise as a novel approach in the field of myocardial tissue engineering.  相似文献   
70.
Proinflammatory M1 activation of hepatic macrophages (HM) is critical in pathogenesis of hepatitis, but its mechanisms are still elusive. Our earlier work demonstrates the role of ferrous iron (Fe(2+)) as a pathogen-associated molecular pattern-independent agonist for activation of IκB kinase (IKK) and NF-κB in HM via activation and interaction of p21(ras), transforming growth factor β-activated kinase-1 (TAK1), and phosphatidylinositol 3-kinase (PI3K) in caveosomes. However, iron-induced signaling upstream of these kinases is not known. Here we show that Fe(2+) induces generation of superoxide anion (O(2)()) in endosomes, reduces protein-tyrosine phosphatase (PTP) activity, and activates Src at 2~10 min of Fe(2+) addition to rat primary HM culture. Superoxide dismutase (SOD) blocks O(2)() generation, PTP inhibition, and Src activation. Fe(2+)-induced p21(ras) activity is abrogated with the Src inhibitor PP2 and SOD. Fe(2+) stimulates Lys(63)-linked polyubiquitination (polyUb) of TRAF6 in caveosomes, and a dominant negative K63R mutant of ubiquitin or SOD prevents iron-induced TRAF6 polyUb and TAK1 activation. These results demonstrate that Fe(2+)-generated O(2)() mediates p21(ras) and TAK1 activation via PTP inhibition and Lys(63)-polyUb of TRAF6 in caveosomes for proinflammatory M1 activation in HM.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号