首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1230篇
  免费   75篇
  1305篇
  2021年   11篇
  2020年   5篇
  2019年   8篇
  2018年   10篇
  2017年   6篇
  2016年   18篇
  2015年   26篇
  2014年   28篇
  2013年   73篇
  2012年   53篇
  2011年   63篇
  2010年   50篇
  2009年   34篇
  2008年   57篇
  2007年   56篇
  2006年   61篇
  2005年   64篇
  2004年   68篇
  2003年   50篇
  2002年   50篇
  2001年   48篇
  2000年   40篇
  1999年   32篇
  1998年   17篇
  1997年   18篇
  1996年   13篇
  1995年   9篇
  1994年   11篇
  1993年   8篇
  1992年   28篇
  1991年   27篇
  1990年   19篇
  1989年   20篇
  1988年   25篇
  1987年   25篇
  1986年   23篇
  1985年   21篇
  1984年   22篇
  1983年   9篇
  1982年   8篇
  1981年   9篇
  1980年   7篇
  1979年   4篇
  1978年   6篇
  1976年   5篇
  1974年   10篇
  1973年   13篇
  1972年   6篇
  1970年   5篇
  1966年   7篇
排序方式: 共有1305条查询结果,搜索用时 15 毫秒
71.
The R-R interval of the electrocardiogram during atrial fibrillation (AF) appears absolutely irregular. However, the Poincaré plot of the R-R interval reveals a sector shape of distribution that is unique to AF. Furthermore, the height of lower envelope (LE1.0) of the distribution and the degree of scatter above the envelope (scattering index) may reflect the refractoriness and concealment of atrioventricular (AV) conduction, respectively. We previously observed that both the LE1.0 and scattering index show clear circadian rhythms in patients with chronic AF and that the rhythms are blunted in those with congestive heart failure and chronic AF. In the present study, we examined if the blunted circadian rhythm of the AV conduction has prognostic value in patients with chronic AF. We studied a retrospective cohort of 120 patients who underwent 24h Holter monitoring at baseline. During an observation period of 33 +/- 16 mon, there were 25 deaths (21%) including 13 cardiac and 8 stroke deaths. All patients showed significant circadian rhythms in both LE1.0 and scattering index with acrophases occurring at night; however, patients dying subsequently from cardiac causes, but not those from fatal stroke were blunted in the circadian rhythms (the amplitudes were < 55% of those in surviving patients). Furthermore, the reduced circadian amplitude of scattering index was an increased risk for cardiac death even after adjustment of coexisting cardiovascular risks [adjusted relative risk (95% confidence interval) per 1-SD decrement, 4.24 (1.54-11.6)]. When patients were divided by the circadian amplitude of the scattering index of 36.5 msec (mean minus 1-SD), the 5yr cardiac mortality below and above the cutoff was 57 and 6%, respectively (log-rank test, p < 0.001). We conclude that the blunted circadian rhythm of AV conduction is an independent risk for cardiac death in patients with chronic AF.  相似文献   
72.
Current therapy for type 1 diabetes mellitus involves a daily regimen of multiple subcutaneous or intramuscular injections of recombinant human insulin. To achieve long-term insulin delivery in vivo, we investigated the applicability of cytomedical therapy using beta TC6 cells or MIN6 cells, both of which are murine pancreatic beta cell lines that secrete insulin in a subphysiologically or physiologically regulated manner, respectively. We examined this therapy in the insulinopenic diabetic mice intraperitoneally injected with beta TC6 cells or MIN6 cells microencapsulated within alginate-poly(L)lysine-alginate membranes (APA-beta TC6 cells or APA-MIN6 cells). The diabetic mice treated with APA-beta TC6 cells fell into hypoglycemia, whereas those injected with APA-MIN6 cells maintained normal blood glucose concentrations for over 2 months without developing hypoglycemia. In addition, we also conducted an oral glucose tolerance test using these mice. The blood glucose concentrations of normal and of diabetic mice injected with APA-MIN6 cells similarly changed over time, although the blood insulin concentration increased later in the injected diabetic mice than in the former. These results suggest that cytomedicine utilizing microencapsulated pancreatic beta cell lines with a physiological glucose sensor may be a beneficial and safe therapy with which to treat diabetes mellitus.  相似文献   
73.
Yoshioka K  Saitoh O  Nakata H 《FEBS letters》2002,523(1-3):147-151
We have explored the process of oligomerization of G protein-coupled purinergic receptors, adenosine A(1) receptor (A(1)R) and P2Y(1) receptor (P2Y(1)R), in intact HEK293T cells by means of modified bioluminescence resonance energy transfer technology (BRET(2)) that offers greatly improved separation of the emission spectra of the donor and acceptor moieties compared to traditional BRET. This approach identified both constitutive and agonist-promoted heteromeric oligomerization between Myc-tagged P2Y(1)R fused to a donor, Renilla luciferase (Myc-P2Y(1)R-Rluc) and HA-tagged A(1)R fused to an acceptor, a different form of green fluorescent protein (HA-A(1)R-GFP(2)). The BRET(2) signal increased in a time-dependent manner in the cells expressing HA-A(1)R-GFP(2)/Myc-P2Y(1)R-Rluc upon addition of agonists for both receptors, which could be inhibited by pretreatment with the P2Y(1)R antagonist MRS2179. A high degree of HA-A(1)R-GFP(2) and Myc-P2Y(1)R-Rluc co-localization in the co-transfected HEK293T cells was also observed by confocal laser microscopy. These results indicate that A(1)R and P2Y(1)R can form constitutive hetero-oligomers in living cells and this process is promoted by the simultaneous activation of both receptors.  相似文献   
74.
A gene encoding an ADP-dependent phosphofructokinase homologue has been identified in the hyperthermophilic archaeon Methanococcus jannaschii via genome sequencing. The gene encoded a protein of 462 amino acids with a molecular weight of 53,361. The deduced amino acid sequence of the gene showed 52 and 29% identities to the ADP-dependent phosphofructokinase and glucokinase from Pyrococcus furiosus, respectively. The gene was overexpressed in Escherichia coli, and the produced enzyme was purified and characterized. To our surprise, the enzyme showed high ADP-dependent activities for both glucokinase and phosphofructokinase. A native molecular mass was estimated to be 55 kDa, and this indicates the enzyme is monomeric. The reaction rate for the phosphorylation of D-glucose was almost 3 times that for D-fructose 6-phosphate. The K(m) values for D-fructose 6-phosphate and D-glucose were calculated to be 0.010 and 1.6 mm, respectively. The K(m) values for ADP were 0.032 and 0.63 mm when D-glucose and D-fructose 6-phosphate were used as a phosphoryl group acceptor, respectively. The gene encoding the enzyme is proposed to be an ancestral gene of an ADP-dependent phosphofructokinase and glucokinase. A gene duplication event might lead to the two enzymatic activities.  相似文献   
75.
The DNA strand scission induced by Fe(II) in a citrate buffer solution and the effect of (-)-epigallocatechin gallate (EGCg) were kinetically analyzed. The rate of consumption of dissolved oxygen by Fe(II) in each of these solutions was measured and paralleled that DNA scission. Coordinated EGCg accelerated these reactions. Curves of the time-course characteristics of DNA scission were simulated by using the rate constant of oxygen consumption and by assuming that scission with the hydroxyl radical (OH), which was formed from the dissolved oxygen, proceeded competitively with the scavenging of OH by citrate, Cl- ions and EGCg added. Free EGCg acted as a DNA scission inhibitor to scavenge OH, in contrast to the case of the coordinated one. This analysis is useful for estimating the rate constant of the reaction between an antioxidant and OH, and might provide a new method for measuring the OH-scavenging activity.  相似文献   
76.
Molybdenum cofactor deficiency is a fatal neurological disorder, which follows an autosomal-recessive trait and is characterized by combined deficiency of the enzyme, sulfite oxidase, xanthine dehydrogenase and aldehyde oxidase. Early detection of molybdenum cofactor-deficient patients is essential for their proper care and genetic counseling of families at risk. We demonstrate the use of S-sulfonated transthyretin (TTR) as a marker for molybdenum cofactor deficiency. Plasma or sera obtained from 4 patients with molybdenum cofactor deficiency and 57 controls were studied by electrospray ionization mass spectrometry (ESIMS) following selective enrichment of TTR by immunoprecipitation using protein G/A agarose. The data obtained from molybdenum cofactor deficiency samples indicated a strong increase in the peak height of S-sulfonated TTR. A more significant difference was revealed if the peak height ratio of S-sulfonated TTR and the sum of the other oxidized TTR were determined. By accurate determination of the ratio, the samples of molybdenum cofactor deficiency patients could clearly be distinguished from controls without molybdenum cofactor deficiency.  相似文献   
77.
We have synthesized a polymeric drug carrier, polyvinylpyrrolidone-co-dimethyl maleic anhydride [poly(VP-co-DMMAn)], for use in renal drug delivery. About 80% of the 10-kDa poly(VP-co-DMMAn) selectively accumulated in the kidneys 24 h after intravenous administration to mice. Although this accumulated poly(VP-co-DMMAn) was gradually excreted in the urine, about 40% remained in the kidneys 96 h after treatment. Poly(VP-co-DMMAn) was taken up by the renal proximal tubular epithelial cells and no cytotoxicity was noted. Higher doses did not produce toxicity in the kidneys or other tissues. In contrast, polyvinylpyrrolidone of the same molecular weight did not show any tissue-specific distribution. Poly(VP-co-DMMAn)-modified superoxide dismutase accumulated in the kidneys after intravenous administration and accelerated recovery from acute renal failure in a mouse model. In contrast, polyvinylpyrrolidone-modified superoxide dismutase and native superoxide dismutase were not as effective. Thus, poly(VP-co-DMMAn) is a useful candidate as a targeting carrier for renal drug delivery systems.  相似文献   
78.
Upon activation, platelets release many active substances stored in alpha- and dense-core granules. However, the molecular mechanisms governing regulated exocytosis are not yet fully understood. Here, we have established an assay system using permeabilized platelets to analyze the Ca(2+)-induced exocytosis of both types of granules, focusing on RabGTPases. Incubation with Rab GDP dissociation inhibitor, an inhibitory regulator of RabGTPases, reduced membrane-bound RabGTPases extensively, and caused strong inhibition of the Ca(2+)-induced secretion of von Willebrand factor (vWF) stored in alpha-granules, but not that of [(3)H]5-hydroxytryptamine (5-HT) in dense-core granules. Specifically, Rab4 co-fractionated with vWF and P-selectin (an alpha-granule marker) upon separation of platelet organelles by density gradient centrifugation. Incubation of the permeabilized platelets with cell extracts expressing the dominant negative mutant of His-tagged Rab4S22N, but not with those of similar mutant His-Rab3BT36N, inhibited the vWF secretion, whereas neither of the cell extracts affected the [(3)H]5-HT secretion. Importantly, the inhibition of vWF secretion was rescued by depleting the cell extracts of the His-Rab4S22N with nickel beads. Thus, in platelets, the regulatory mechanisms governing alpha- and dense-core granule secretions are distinct, and Rab4 is an essential regulator of the Ca(2+)-induced exocytosis of alpha-granules.  相似文献   
79.
80.
Iwamoto N  Xano HJ  Yoshioka T  Shiraga H  Nitta K  Muraki T  Ito K 《Life sciences》2000,66(15):PL221-PL226
A natural tetrapeptide, acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) is a physiological negative regulator of hematopoiesis. The precursor of AcSDKP, thymocin beta 4, is expressed in many tissues including kidney. The present study examined the antiproliferative effect of AcSDKP in two renal cell lines, namely, renal interstitial fibloblasts cell line (NRK 49F) and renal proximal tubular epitherial cells (LLC-PK1). An addition of AcSDKP for 48 hours in theses cells resulted in a concentration-dependent attenuation in the proliferation rate (significant difference to non-treated cells was observed at 10(-9) to 10(-5) M AcSDKP) determined by a colorimetry of alamer blue oxidation. The cell cycle analysis of NRK 49F cells treated with AcSDKP showed that AcSDKP significantly reduced the ratio of S-phase to G2/M-phases. Thus, physiological concentrations of AcSDKP is capable of altering cell cycle to inhibit the proliferation of renal cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号