首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   875篇
  免费   59篇
  2023年   4篇
  2022年   4篇
  2021年   14篇
  2020年   11篇
  2019年   5篇
  2018年   10篇
  2017年   8篇
  2016年   21篇
  2015年   28篇
  2014年   30篇
  2013年   67篇
  2012年   60篇
  2011年   43篇
  2010年   25篇
  2009年   38篇
  2008年   48篇
  2007年   45篇
  2006年   47篇
  2005年   48篇
  2004年   45篇
  2003年   39篇
  2002年   30篇
  2001年   13篇
  2000年   17篇
  1999年   16篇
  1998年   14篇
  1997年   5篇
  1996年   9篇
  1995年   6篇
  1994年   9篇
  1993年   4篇
  1992年   9篇
  1991年   11篇
  1990年   16篇
  1989年   15篇
  1988年   10篇
  1987年   14篇
  1986年   7篇
  1985年   8篇
  1983年   6篇
  1982年   6篇
  1980年   4篇
  1979年   5篇
  1978年   4篇
  1977年   7篇
  1976年   4篇
  1975年   7篇
  1973年   7篇
  1972年   6篇
  1970年   7篇
排序方式: 共有934条查询结果,搜索用时 46 毫秒
121.
The study of membrane protein structure and function requires their high-level expression and purification in fully functional form. We previously used a tetracycline-inducible stable mammalian cell line, HEK293S-TetR, for regulated high-level expression of G-protein coupled receptors. We here report successfully using this method for high-level expression of de novo oligo-DNA assembled human CD81 gene. CD81 is a member of the vital tetraspanin membrane protein family. It has recently been identified as the putative receptor for the Hepatitis C Virus envelope E2 glycoprotein (HCV-E2). In this study we used a single-step rho-1D4-affinity purification method to obtain >95% purity from HEK293S-TetR-inducible stable cell lines. Using ELISA assay we determined that the affinity of the purified CD81 receptor for HCV-E2 protein is 3.8+/-1.2 nM. Using fluorescent confocal microscopy we showed that the inducibly overexpressed CD81 receptor in HEK293S-TetR cells is correctly located on the plasma membrane. We demonstrated that the combination of high-level expression of CD81 with efficient single-step immunoaffinity purification is a useful method for obtaining large quantities of CD81 membrane receptor suitable for detailed structural analyses of this elusive tetraspanin protein. Furthermore, this simple single-step immunoaffinity purification to high purity of membrane protein could be useful broadly for other membrane protein purifications, thus accelerating the determination of structures for large numbers of difficult-to-obtain membrane proteins.  相似文献   
122.

Background

Selective serotonin reuptake inhibitors (SSRIs) have been widely used and are a major therapeutic advance in psychopharmacology. However, their pharmacology is quite heterogeneous. The SSRI fluvoxamine, with sigma-1 receptor agonism, is shown to potentiate nerve-growth factor (NGF)-induced neurite outgrowth in PC 12 cells. However, the precise cellular and molecular mechanisms underlying potentiation by fluvoxamine are not fully understood. In this study, we examined the roles of cellular signaling pathways in the potentiation of NGF-induced neurite outgrowth by fluvoxamine and sigma-1 receptor agonists.

Methods and Findings

The effects of three SSRIs (fluvoxamine, sertraline, paroxetine) and three sigma-1 receptor agonists (SA4503, 4-phenyl-1-(4-phenylbutyl) piperidine (PPBP), and dehydroepiandrosterone (DHEA)-sulfate) on NGF-induced neurite outgrowth in PC12 cells were examined. Also examined were the effects of the sigma-1 receptor antagonist NE-100, inositol 1,4,5-triphosphate (IP3) receptor antagonist, and specific inhibitors of signaling pathways in the potentiation of NGF-induced neurite outgrowth by selective sigma-1 receptor agonist SA4503. Fluvoxamine (but not sertraline or paroxetine) and the sigma-1 receptor agonists SA4503, PPBP, and DHEA-sulfate significantly potentiated NGF-induced neurite outgrowth in PC12 cells in a concentration-dependent manner. The potentiation by fluvoxamine and the three sigma-1 receptor agonists was blocked by co-administration of the selective sigma-1 receptor antagonist NE-100, suggesting that sigma-1 receptors play a role in blocking the enhancement of NGF-induced neurite outgrowth. Moreover, the potentiation by SA4503 was blocked by co-administration of the IP3 receptor antagonist xestospongin C. In addition, the specific inhibitors of phospholipase C (PLC-γ), phosphatidylinositol 3-kinase (PI3K), p38MAPK, c-Jun N-terminal kinase (JNK), and the Ras/Raf/mitogen-activated protein kinase (MAPK) signaling pathways blocked the potentiation of NGF-induced neurite outgrowth by SA4503.

Conclusion

These findings suggest that stimulation of sigma-1 receptors and subsequent interaction with IP3 receptors, PLC-γ, PI3K, p38MAPK, JNK, and the Ras/Raf/MAPK signaling pathways are involved in the mechanisms of action of sigma-1 receptor agonists such as fluvoxamine and SA4503.  相似文献   
123.
This study investigated the effect of visible light exposure on retinal pigment epithelium (RPE). The activation of Wnt/β-catenin pathway was investigated by immunofluorescence and Western blot analysis using human retinal pigment epithelial (ARPE-19) cells, which demonstrated that the exposure of white light induced the activation of the Wnt/β-catenin pathway. Real time RT-PCR demonstrated that the mRNA of α-smooth muscle actin (α-SMA), and vimentin increased 2.5-4-fold and that of zona occludens 1 (ZO-1) decreased approximately 0.8-fold after white light exposure. The up-regulation of vimentin expression and the down-regulation of ZO-1 were evident by Western blot analysis and immunohistochemistry. Moreover, the ability of phagocytosis of ARPE-19 cells decreased 0.6-fold after light exposure. Together, white light exposure was supposed to induce the activation of Wnt/β-catenin pathway, the changes in the expression markers of epithelial and mesenchymal cells in RPE cells, and the concomitant impairment of the ability of phagocytosis.  相似文献   
124.
Abnormal mesangial extracellular matrix remodeling by mesangial cells (MCs) is the hallmark of progressive glomerulonephritis (GN). We recently showed, using a type I collagen gel contraction assay, that α1β1 integrin-dependent MC adhesion and migration are necessary cell behaviors for collagen matrix remodeling. To further determine the mechanism of α1β1 integrin-mediated collagen remodeling, we studied the signaling pathways of MCs that participate in the regulation of collagen gel contraction. Immunoprecipitation and phosphotyrosine detection revealed that gel contraction is associated with the enhanced activity and phosphorylation of ERK1/2 by MCs. The tyrosine kinase inhibitors herbimycin and genistein inhibited collagen gel contraction dose dependently. Furthermore, targeting ERK1/2 activity with a MEK inhibitor, PD98059, and antisense ERK1/2 hindered gel contraction in a dose-dependent manner. Similar inhibitory effects on gel contraction and ERK1/2 phosphorylation were observed when MC-mediated gel contraction was performed in the presence of function-blocking anti-α1 or anti-β1 integrin antibodies. However, cell adhesion and migration assays indicated that PD98059 and antisense ERK1/2 blocked α1β1 integrin-dependent MC migration, but did not interfere with collagen adhesion, although there was a marked decrease in ERK1/2 phosphorylation and ERK1/2 protein expression in cell adhesion on type I collagen. None of the above could affect membrane expression of α1β1 integrin. These results suggested that ERK1/2 activation is critical for the α1β1 integrin-dependent MC migration necessary for collagen matrix reorganization. We therefore conclude that ERK1/2 may serve as a possible target for pharmacological inhibition of pathological collagen matrix formation in GN.  相似文献   
125.
Streptococcus mutans is a cariogenic bacterium that localizes in the oral cavity. Glycyrrhetinic acid (GRA) is a major component of licorice extract. GRA and several derivatives, including disodium succinoyl glycyrrhetinate (GR‐SU), are known to have anti‐inflammatory effects in humans. In this study, the antimicrobial effect of GRA and its derivatives against the S. mutans UA159 strain were investigated. Minimum inhibitory concentrations (MICs) of GRA and GR‐SU showed antibacterial activity against the S. mutans strain, whereas other tested derivatives did not. Because GR‐SU is more soluble than GRA, GR‐SU was used for further experiments. The antibacterial activity of GR‐SU against 100 S. mutans strains was evaluated and it was found that all strains are susceptible to GR‐SU, with MIC values below 256 µg/mL. A cell viability assay showed that GR‐SU has a bacteriostatic effect on S. mutans cells. As to growth kinetics, sub‐MICs of GR‐SU inhibited growth. The effect of GR‐SU on S. mutans virulence was then investigated. GR‐SU at sub‐MICs suppresses biofilm formation. Additionally, GR‐SU greatly suppresses the pH drop caused by the addition of glucose and glucose‐induced expression of the genes responsible for acid production (ldh and pykF) and tolerance (aguD and atpD). Additionally, expression of enolase, which is responsible for the carbohydrate phosphotransferase system, was not increased in the presence of GR‐SU, indicating that GR‐SU suppresses incorporation of sugars into S. mutans. In conclusion, GR‐SU has antibacterial activity against S. mutans and also decreases S. mutans virulence.  相似文献   
126.
The high-level expression system of goat alpha-lactalbumin (alpha-LA) in E. coli was established by fusing the alpha-LA cDNA to porcine adenylate kinase cDNA and expressing the fused gene under the control of tac promoter. For high-level expression, elimination of 3'-noncoding region of the alpha-LA cDNA was found to be necessary.  相似文献   
127.
128.
129.
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号