首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1787篇
  免费   136篇
  2021年   13篇
  2020年   8篇
  2019年   16篇
  2018年   23篇
  2017年   16篇
  2016年   24篇
  2015年   45篇
  2014年   33篇
  2013年   134篇
  2012年   114篇
  2011年   102篇
  2010年   57篇
  2009年   56篇
  2008年   98篇
  2007年   91篇
  2006年   91篇
  2005年   77篇
  2004年   92篇
  2003年   91篇
  2002年   100篇
  2001年   63篇
  2000年   49篇
  1999年   55篇
  1998年   20篇
  1997年   22篇
  1996年   14篇
  1995年   26篇
  1994年   15篇
  1993年   16篇
  1992年   36篇
  1991年   27篇
  1990年   39篇
  1989年   28篇
  1988年   38篇
  1987年   26篇
  1986年   19篇
  1985年   28篇
  1984年   16篇
  1983年   10篇
  1982年   14篇
  1981年   5篇
  1980年   8篇
  1979年   13篇
  1978年   6篇
  1977年   8篇
  1975年   5篇
  1973年   10篇
  1972年   7篇
  1971年   3篇
  1969年   3篇
排序方式: 共有1923条查询结果,搜索用时 15 毫秒
81.
We have found that some straight-chained α-amino acids are converted by yeast to the alcohols with correspondingly longer carbon chains in the alcoholic fermentation contrary to F. Ehrlich’s scheme, i.e., isobutyl alcohol from alanine and active amyl alcohol from α-amino-n-butyric acid or threonine.

In this report, we confirmed this fact in the alcoholic fermentation of many aliphatic amino acids by 2 yeast strains using gas chromatography. Moreover, n-propyl alcohol was proved to come from α-amino-n-butyric acid or threonine. Small quantities of n-propyl, isobutyl, active amyl and isoamyl alcohols were found in all the fermented solutions. There was some difference in the composition of higher alcohols of the alcoholic solutions fermented by different yeasts.  相似文献   
82.
Metabolism of 2,4,4′-trichlorobiphenyl by Acinetobacter sp. strain P6 has been studied. When the incubation was carried out without shaking at 15°C, two isomeric monohydroxy compounds, a dihydrodiol compound, a dihydroxy compound, a meta-cleaved yellow compound and a dichlorobenzoic acid were detected by combined gas liquid chromatograph-mass spectrometry. As an additional metabolite, dichlorodihydroxy biphenyl, a dechlorinationhydroxylation product, was also detected. When the incubation mixture was shaken at 30°C, a meta-cleaved yellow compound was readily produced and predominantly accumulated in the reaction mixture upon further incubation. The major pathway of 2,4,4′-trichlorobiphenyl by Acinetobacter sp. P6 was considered to proceed oxidatively via 2.′3′-dihydro-2′,3′-diol compound, concomitant dehydrogenated 2′,3′-dihydroxy compound and then the 1′,2′-meta-cleaved yellow compound, i.e., 3-chloro-2-hydroxy-6-oxo-6(2,4-dichlorophenyl)hexa-2,4-dienoic acid.  相似文献   
83.
The α2β2 complex of tryptophan synthase from Escherichia coli catalyzes β-replacement reactions of l-serine and its derivatives (e.g., β-chloro-l-alanine and O-methyl-Dl-serine) with various alkanethiols. The products from thiobenzyl alcohol and ethanethiol were isolated to demonstrate the enzymatic synthesis of the corresponding S-substituted l-cysteines. Reactivities of various S-substituent donors were examined, and thiols such as thiobenzyl alcohol, 1-propanethiol and 1-butanethiol were found to be much more efficient substituent donors than the physiological substrate, indole. In addition, tryptophan synthase catalyzes β-replacement reactions of l-threonine with thiols to form the corresponding S-substituted β-methylcysteines, which are also produced by β-addition reactions of l-vinylglycine with thiols. These enzymatic reactions facilitate the synthesis of various sulfur-containing amino acids.  相似文献   
84.
Methods are investigated for evaluating the kinetic parameters in a modified Monod’s equation which give the best fit to the growth thermograms for bacterial cultures observed in batch calorimeters. Four mathematical methods were employed as parameter fitting techniques. The growth thermograms observed for soil microbes cultured with glucose as a limiting substrate were used as the objects of the analysis. For the calculation of the heat evolution rate, the Runge-Kutta method, which is commonly used for the numerical analysis, was employed. A comparison of the results obtained by the four methods in terms of closeness of fit to the actual thermograms showed that optimization by direct searching with the Simplex method is the most effective procedure for obtaining the best values of the parameters to reproduce the observed thermograms.  相似文献   
85.
Caffeine and caffeine-containing beverages (instant coffee, black tea, green tea, or oolong tea) caused a significant decrease in serum tryptophan, and significant increases in brain tryptophan, serotonin, and 5-hydroxyindole acetic acid over those in rats fed a control diet. Adenosine supplementation partially counteracted the increase of brain serotonin caused by caffeine. These results are interpreted as indicating that caffeine-containing beverages may have some nutritional and behavioral effects.  相似文献   
86.
The leucine dehydrogenase (l-leucine: NAD+ oxidoreductase, deaminating, EC 1.4.1.9) gene of Clostridium thermoaceticum was cloned and expressed in Escherichia coli C600 with a vector plasmid, pICD242, which was constructed from pBR322 and the leucine dehydrogenase gene derived from C. thermoaceticum. The enzyme overproduced in the clone was purified about 12 fold to homogeneity by heat treatment and another two steps with a yield of 46%. The enzyme of E. coli- pICD242 was immunochemically identical with that of C. thermoaceticum. The enzyme has a molecular weight of about 350,000 and consists of six subunits identical in molecular weight (56,000). The enzyme is not inactivated by heat treatment: at pH 7.2 and 75°C for 15 min; at 55°C and various pH’s between 6.0 and 10.0 for 10 min. The enzyme catalyzes the oxidative deamination of branched-chain l-amino acids and the reductive amination of their 2-oxo analogues in the presence of NAD+ and NADH, respectively. The pro-S hydrogen at C-4 of the dihydronicotin- amide ring of NADH is exclusively transferred to the substrate; the enzyme is B stereospecific. The enzymological properties are very similar to those of the Bacillus stearothermophilus enzyme [T. Ohshima, S. Nagata and K. Soda, Arch. Microbiol., 141, 407 (1985)].  相似文献   
87.
An enzyme that catalyzes the synthesis of S-carboxymethyl- l-cysteine from 3-chloro- l-alanine (3-Cl-Ala) and thioglycolic acid was found in Escherichia coli W3110 and was designated as S- carboxymethyl-l-cysteine synthase. It was purified from the cell-free extract to electrophoretic homogeneity and was crystallized. The enzyme has a molecular weight of 84,000 and gave one band corresponding to a molecular weight of 37,000 on SDS-polyacrylamide gel electrophoresis. The purified enzyme catalyzed the β-replacement reactions between 3-CI-AIa and various thiol compounds. The apparent Km values for 3-Cl-Ala and thioglycolic acid were 40 mM and 15.4 mM. The enzyme showed very low activity as to the α,β-elimination reaction with 3-Cl-Ala and l-serine. It was not inactivated on the incubation with 3-Cl-Ala. The absorption spectrum of the enzyme shows a maximum at 412 nm, indicating that it contains pyridoxal phosphate as a cofactor. The N-terminal amino acid sequence was determined and the corresponding sequence was detected in the protein sequence data bank, but no homogeneous sequence was found.  相似文献   
88.
Formaldehyde dehydrogenase from Pseudomonas putida C-83 was found to contain 7 halfcystine residues per subunit monomer, as checked by the method of performic acid oxidation. Approximately 7 sulfhydryl groups per subunit monomer were titrated with 5,5′-dithiobis(2-nitrobenzoic acid) (DTNB) after denaturation with 8 m urea. In the native enzyme, modification of three sulfhydryl groups per subunit with p-chloromercuribenzoate (PCMB) led to the complete loss of enzyme actiyities for both formaldehyde and n-butanol. Hydrogen-peroxide competitively inhibited the enzyme activity for formaldehyde, while it was only slightly inhibitory to the activity for n-butanol. Both formaldehyde and hydrogen-peroxide protected one sulfhydryl group per subunit monomer from modification with PCMB. Moreover, hydrogen-peroxide was hardly reactive to the enzyme which was preincubated with formaldehyde.

From these observations, we conclude that one of three PCMB-reactive sulfhydryl groups is essential for the binding of formaldehyde, and hydrogen-peroxide modifies this sulfhydryl group.  相似文献   
89.
Threonine aldolase was found to be formed in various strains of bacteria and yeasts when they were grown in media containing l-threonine as a sole source of carbon. As the other sources of carbon, d, l-allothreonine, l-serine and glycine were effective but glucose and sucrose were inert for the formation of the enzyme.

The maximal formation of the enzyme was observed in the initial of stationary phase of growth and, thereafter, the enzyme disappeared with the consumption of l-threonine. It seems that the enzyme is adaptive in nature and that it is responsible for the growth in threonine as the carbon source.  相似文献   
90.
Two genes of Pseudomonas putida (IFO 12996) which code for enzymes participating in amino acid metabolism, were cloned in Escherichia coli C600 using pBR322 as a vector. pST7549 is a 7.9 kb hybrid plasmid DNA which is composed of four SalI fragments (0.3, 1.4, 1.9 and 4.3 kb), and codes for β-isopropylmalate dehydrogenase (EC 1.1.1.85) in l-leucine biosynthesis. The enzyme activity in the crude extract from E. coli C600 bearing pST7549 was 80 ~ 90% lower than that of E. coli K12 or P. putida. When the foreign SalI fragments derived from P. putida were subcloned, a 1.9 kb SalI fragment was found to encode β-isopropylmalate dehydrogenase and it did not contain the promoter of P. putida DNA. Plasmid pST6961 has a 1.8 kb insert derived from the P. putida DNA in the SalI site of pBR322. E. coli cells carrying this recombinant plasmid show no leucine racemase activity and no d-leucine transaminase activity, but five-times higher d-leucine oxidation activity than the host strain, E. coli. Enzymological studies have suggested that plasmid pST6961 codes for d-amino acid dehydrogenase, a key enzyme in d-amino acid metabolism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号