首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   295篇
  免费   12篇
  2023年   1篇
  2022年   1篇
  2020年   3篇
  2019年   5篇
  2018年   9篇
  2017年   6篇
  2016年   2篇
  2015年   9篇
  2014年   13篇
  2013年   17篇
  2012年   24篇
  2011年   16篇
  2010年   10篇
  2009年   6篇
  2008年   18篇
  2007年   13篇
  2006年   15篇
  2005年   19篇
  2004年   20篇
  2003年   21篇
  2002年   29篇
  2001年   6篇
  2000年   7篇
  1999年   6篇
  1998年   1篇
  1997年   3篇
  1996年   5篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   4篇
  1990年   2篇
  1989年   1篇
  1988年   5篇
  1987年   1篇
  1982年   1篇
  1967年   1篇
排序方式: 共有307条查询结果,搜索用时 15 毫秒
301.
Hyperinsulinism-hyperammonemia syndrome (HHS) is a recently identified genetic disorder characterized by hyperinsulinemic hypoglycemia with concomitant hyperammonemia. In patients with HHS, activating mutations in the glutamate dehydrogenase (GDH) gene have been identified. GDH is a key enzyme linking glutamate metabolism with the Krebs cycle and catalyzes the conversion of glutamate to α-ketoglutarate. The activity of GDH is controlled by allosteric inhibition by GTP and, so far, all the mutations of HHS patients have been located within the GTP-binding site. Characteristically, GDH from these individuals have therefore normal basal activity in conjunction with a loss of GTP inhibition. In this study, however, we have identified a novel variant GDH in a patient with a more severe form of HHS. The mutation is located outside the GTP-binding site and the patient’s GDH shows consistently higher activity, even in the absence of allosteric effectors. These results further support the hypothesis that the activating mutation of GDH is the cause of HHS. The mechanism leading to the activation of GDH, however, is not always related to the loss of GTP inhibition as was originally suggested. Received: 4 January 1999 / Accepted: 11 March 1999  相似文献   
302.
The morphofunctional development of Sertoli cells defines the testicular differentiation. These somatic cells are mostly of mesonephric origin and can be first recognized in 7 week-old embryos altogether with the formation of testicular cords. The latter organize as primordial germ cells surrounded by pre-Sertoli cells. Due to the great synthetic activity of pre-Sertoli cells the rough endoplasmic reticulum develops. The basal lamina of the cords becomes distinguishable at 7 to 8 weeks of development. Either prespermatogonia and pre-Sertoli cells actively proliferate but the latter greatly outnumber prespermatogonia. Many interdigitations and cytoplasmic processes are observed between neighboring pre-Sertoli cells. Due to the proliferative activity a sort of compartmentalization is established inside the cords in which pre-Sertoli cells tend to localize closer to the basal membrane embracing the prespermatogonia with long and thin cytoplasmic processes. One of the main features typical of differentiating pre-Sertoli cells is the irregular nucleus and the prominent nucleolus. When the embryo is 14 to 20 weeks-old the most significative change is the maximum development of the Leydig cells. Testicular cords do not show lumen at all, so they cannot be termed “tubules”  相似文献   
303.
Epidemiological studies suggest that green tea extracts (GTEs), including catechins such as epigallocatechin gallate and epicatechin gallate, have a beneficial effect on obesity, hyperglycemia, insulin resistance, endothelial dysfunction, and inflammation. Although several studies have shown that catechins directly modulate the cellular and molecular alterations in the liver tissue, the contributions of indirect mechanisms underlying these systemic effects of catechins remain unclear. In this study, we report that, in the C57BL/6J mouse liver, GTEs reduce high-fat diet-induced increases in the levels of hepatokines, liver-derived secretary proteins such as leukocyte cell-derived chemotaxin 2 and selenoprotein P production, which have been shown to induce systemic adverse effects, including several metabolic diseases. These findings suggest that the systemic effects of GTEs involve the regulation of hepatokine production as an indirect mechanism.  相似文献   
304.
The periodontal ligament (PDL) is an essential fibrous tissue for tooth retention in the alveolar bone socket. PDL tissue further functions to cushion occlusal force, maintain alveolar bone height, allow orthodontic tooth movement, and connect tooth roots with bone. Severe periodontitis, deep caries, and trauma cause irreversible damage to this tissue, eventually leading to tooth loss through the destruction of tooth retention. Many patients suffer from these diseases worldwide, and its prevalence increases with age. To address this issue, regenerative medicine for damaged PDL tissue as well as the surrounding tissues has been extensively investigated regarding the potential and effectiveness of stem cells, scaffolds, and cytokines as well as their combined applications. In particular, PDL stem cells (PDLSCs) have been well studied. In this review, I discuss comprehensive studies on PDLSCs performed in vivo and contemporary reports focusing on the acquisition of large numbers of PDLSCs for therapeutic applications because of the very small number of PDLSCs available in vivo.  相似文献   
305.
The daily rhythm of glucose metabolism is governed by the circadian clock, which consists of cell-autonomous clock machineries residing in nearly every tissue in the body. Disruption of these clock machineries either environmentally or genetically induces the dysregulation of glucose metabolism. Although the roles of clock machineries in the regulation of glucose metabolism have been uncovered in major metabolic tissues, such as the pancreas, liver, and skeletal muscle, it remains unknown whether clock function in non-major metabolic tissues also affects systemic glucose metabolism. Here, we tested the hypothesis that disruption of the clock machinery in the heart might also affect systemic glucose metabolism, because heart function is known to be associated with glucose tolerance. We examined glucose and insulin tolerance as well as heart phenotypes in mice with heart-specific deletion of Bmal1, a core clock gene. Bmal1 deletion in the heart not only decreased heart function but also led to systemic insulin resistance. Moreover, hyperglycemia was induced with age. Furthermore, heart-specific Bmal1-deficient mice exhibited decreased insulin-induced phosphorylation of Akt in the liver, thus indicating that Bmal1 deletion in the heart causes hepatic insulin resistance. Our findings revealed an unexpected effect of the function of clock machinery in a non-major metabolic tissue, the heart, on systemic glucose metabolism in mammals.  相似文献   
306.
Abstract

We have designed a new type of antisense oligonucleotide, containing two hairpin loop structures with RNA/DNA base pairs (sense (RNA) and antisense (DNA)) in the double helical stem (nicked and circular dumbbell DNA/RNA chimeric oligonucleotides). The reaction of the nicked and circular dumbbell DNA/RNA chimeric oligonucleotides with RNase H gave the corresponding anti-DNA together with the sense RNA cleavage products. These oligonucleotides were more resistant to exonuclease attack. We also describe the anti-Fluv activities of nicked and circular dumbbell DNMA chimeric oligonucleotides.  相似文献   
307.
Although there have been several studies on the structure of the ocellus photoreceptors in ascidian tadpole larvae using electron microscopy, the overall structure of these photoreceptor cells, especially the projection sites of the axons, has not been revealed completely. The number of photoreceptor cells is also controversial. Here, the whole structure of the ocellus photoreceptors in the larvae of the ascidian Ciona intestinalis was revealed by using an anti‐arrestin (anti–Ci‐Arr) antibody. The cell bodies of 30 photoreceptor cells covered the right side of the ocellus pigment cell and their outer segments extended through the pigment cell into the pigment cup. The axons of the photoreceptor cells were bundled together ventro‐posteriorly in a single tract extending towards the midline. The nerve terminals diverged antero‐posteriorly at the midline of the posterior sensory vesicle (SV). The Ci‐arr gene was expressed throughout the SV at the embryonic mid‐tailbud stage and it became restricted to the neighborhood of the ocellus pigment when ocellus pigmentation occurred. At the same time, the Ci‐Arr protein was first detected, suggesting that the photoreceptor cells began to differentiate. The development of photoreceptor cells after hatching was also investigated using the anti–Ci‐Arr antibody. Three hours after hatching, the photoreceptor terminals began to ramify and then expanded. Previous behavioral analysis showed that the larvae did not respond to the step‐down of light until 2 h after hatching and then the photoresponse became robust. Accordingly, our results suggest that growth of the photoreceptor terminal is critical for the larvae to become photoresponsive. © 2005 Wiley Periodicals, Inc. J Neurobiol, 2005  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号