首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2953篇
  免费   166篇
  国内免费   1篇
  3120篇
  2023年   4篇
  2022年   14篇
  2021年   35篇
  2020年   15篇
  2019年   24篇
  2018年   34篇
  2017年   47篇
  2016年   57篇
  2015年   91篇
  2014年   107篇
  2013年   268篇
  2012年   170篇
  2011年   154篇
  2010年   117篇
  2009年   110篇
  2008年   175篇
  2007年   199篇
  2006年   223篇
  2005年   189篇
  2004年   196篇
  2003年   170篇
  2002年   138篇
  2001年   36篇
  2000年   31篇
  1999年   46篇
  1998年   30篇
  1997年   29篇
  1996年   29篇
  1995年   29篇
  1994年   34篇
  1993年   25篇
  1992年   32篇
  1991年   26篇
  1990年   27篇
  1989年   15篇
  1988年   26篇
  1987年   20篇
  1986年   15篇
  1985年   18篇
  1984年   17篇
  1983年   9篇
  1982年   15篇
  1981年   14篇
  1980年   7篇
  1979年   10篇
  1978年   9篇
  1977年   6篇
  1976年   9篇
  1975年   6篇
  1973年   4篇
排序方式: 共有3120条查询结果,搜索用时 15 毫秒
981.
Channelrhodopsin-2 (ChR2) from the green alga Chlamydomonas reinhardtii functions as a light-gated cation channel that has been developed as an optogenetic tool to stimulate specific nerve cells in animals and control their behavior by illumination. The molecular mechanism of ChR2 has been extensively studied by a variety of spectroscopic methods, including light-induced difference Fourier transform infrared (FTIR) spectroscopy, which is sensitive to structural changes in the protein upon light activation. An atomic structure of channelrhodopsin was recently determined by x-ray crystallography using a chimera of channelrhodopsin-1 (ChR1) and ChR2. Electrophysiological studies have shown that ChR1/ChR2 chimeras are less desensitized upon continuous illumination than native ChR2, implying that there are some structural differences between ChR2 and chimeras. In this study, we applied light-induced difference FTIR spectroscopy to ChR2 and ChR1/ChR2 chimeras to determine the molecular basis underlying these functional differences. Upon continuous illumination, ChR1/ChR2 chimeras exhibited structural changes distinct from those in ChR2. In particular, the protonation state of a glutamate residue, Glu-129 (Glu-90 in ChR2 numbering), in the ChR chimeras is not changed as dramatically as in ChR2. Moreover, using mutants stabilizing particular photointermediates as well as time-resolved measurements, we identified some differences between the major photointermediates of ChR2 and ChR1/ChR2 chimeras. Taken together, our data indicate that the gating and desensitizing processes in ChR1/ChR2 chimeras are different from those in ChR2 and that these differences should be considered in the rational design of new optogenetic tools based on channelrhodopsins.  相似文献   
982.
ADAMDEC1 is a proteolytically active metzincin metalloprotease displaying rare active site architecture with a zinc-binding Asp residue (Asp-362). We previously demonstrated that substitution of Asp-362 for a His residue, thereby reconstituting the canonical metzincin zinc-binding environment with three His zinc ligands, increases the proteolytic activity. The protease also has an atypically short domain structure with an odd number of Cys residues in the metalloprotease domain. Here, we investigated how these rare structural features in the ADAMDEC1 metalloprotease domain impact the proteolytic activity, the substrate specificity, and the effect of inhibitors. We identified carboxymethylated transferrin (Cm-Tf) as a new ADAMDEC1 substrate and determined the primary and secondary cleavage sites, which suggests a strong preference for Leu in the P1′ position. Cys392, present in humans but only partially conserved within sequenced ADAMDEC1 orthologs, was found to be unpaired, and substitution of Cys392 for a Ser increased the reactivity with α2-macroglobulin but not with casein or Cm-Tf. Substitution of Asp362 for His resulted in a general increase in proteolytic activity and a change in substrate specificity was observed with Cm-Tf. ADAMDEC1 was inhibited by the small molecule inhibitor batimastat but not by tissue inhibitor of metalloproteases (TIMP)-1, TIMP-2, or the N-terminal inhibitory domain of TIMP-3 (N-TIMP-3). However, N-TIMP-3 displayed profound inhibitory activity against the D362H variants with a reconstituted consensus metzincin zinc-binding environment. We hypothesize that these unique features of ADAMDEC1 may have evolved to escape from inhibition by endogenous metalloprotease inhibitors.  相似文献   
983.
984.
Chain collapse and secondary structure formation are frequently observed during the early stages of protein folding. Is the chain collapse brought about by interactions between secondary structure units or is it due to polymer behavior in a poor solvent (coil‐globule transition)? To answer this question, we measured small‐angle X‐ray scattering for a series of β‐lactoglobulin mutants under conditions in which they assume a partially folded state analogous to the folding intermediates. Mutants that were designed to disrupt the secondary structure units showed the gyration radii similar to that of the wild type protein, indicating that chain collapse is due to coil‐globule transitions. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 651–658, 2014.  相似文献   
985.
We recently reported that trace insertion of exogenous fluorescent (green BODIPY) analogs of sphingomyelin (SM) into living red blood cells (RBCs), partially spread onto coverslips, labels submicrometric domains, visible by confocal microscopy. We here extend this feature to endogenous SM, upon binding of a SM-specific nontoxic (NT) fragment of the earthworm toxin, lysenin, fused to the red monomeric fluorescent protein, mCherry [construct named His-mCherry-NT-lysenin (lysenin*)]. Specificity of lysenin* binding was verified with composition-defined liposomes and by loss of 125I-lysenin* binding to erythrocytes upon SM depletion by SMase. The 125I-lysenin* binding isotherm indicated saturation at 3.5 × 106 molecules/RBC, i.e., ∼3% of SM coverage. Nonsaturating lysenin* concentration also labeled sub­micrometric domains on the plasma membrane of partially spread erythrocytes, colocalizing with inserted green BODIPY-SM, and abrogated by SMase. Lysenin*-labeled domains were stable in time and space and were regulated by temperature and cholesterol. The abundance, size, positioning, and segregation of lysenin*-labeled domains from other lipids (BODIPY-phosphatidylcholine or -glycosphingolipids) depended on membrane tension. Similar lysenin*-labeled domains were evidenced in RBCs gently suspended in 3D-gel. Taken together, these data demonstrate submicrometric compartmentation of endogenous SM at the membrane of a living cell in vitro, and suggest it may be a genuine feature of erythrocytes in vivo.  相似文献   
986.
IRBIT (also called AHCYL1) was originally identified as a binding protein of the intracellular Ca2 + channel inositol 1,4,5-trisphosphate (IP3) receptor and functions as an inhibitory regulator of this receptor. Unexpectedly, many functions have subsequently been identified for IRBIT including the activation of multiple ion channels and ion transporters, such as the Na+/HCO3 co-transporter NBCe1-B, the Na+/H+ exchanger NHE3, the Cl channel cystic fibrosis transmembrane conductance regulator (CFTR), and the Cl/HCO3 exchanger Slc26a6. The characteristic serine-rich region in IRBIT plays a critical role in the functions of this protein. In this review, we describe the evolution, domain structure, expression pattern, and physiological roles of IRBIT and discuss the potential molecular mechanisms underlying the coordinated regulation of these diverse ion channels/transporters through IRBIT. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.  相似文献   
987.
In Arabidopsis thaliana, Dicer-like 3 (DCL3) and Dicer-like 4 (DCL4) cleave long, perfect double-stranded RNAs (dsRNAs) into 24 and 21 nucleotides (nt) small interfering RNAs, respectively, which in turn function in RNA-directed DNA methylation and RNA interference, respectively. To reveal how DCL3 and DCL4 individually recognize long perfect dsRNAs as substrates, we biochemically characterized DCL3 and DCL4 and compared their enzymatic properties. DCL3 preferentially cleaves short dsRNAs with 5′ phosphorylated adenosine or uridine and a 1 nt 3′ overhang, whereas DCL4 cleaves long dsRNAs with blunt ends or with a 1 or 2 nt 3′ overhang with similar efficiency. DCL3 produces 24 nt RNA duplexes with 2 nt 3′ overhangs by the 5′ counting rule. Inorganic phosphate, NaCl and KCl enhance DCL3 activity but inhibit DCL4 activity. These results indicate that plants use DCLs with distinct catalytic profiles to ensure each dsRNA substrate generates only a specific length of siRNAs that trigger a unique siRNA-mediated response.  相似文献   
988.
Accumulations of radionuclides in marine macroalgae (seaweeds) resulting from the Fukushima 1 Nuclear Power Plant (F1NPP) accident in March 2011 have been monitored for two years using high-purity germanium detectors. Algal specimens were collected seasonally by snorkeling at Nagasaki, Iwaki, Fukushima Prefecture (Pref.), Japan, ca. 50 km perimeter from the F1NPP. Additional collections were done at Soma, Hironocho, Hisanohama and Shioyazaki in Fukushima Pref. as well as at Chiba Pref. and Hyogo Pref. as controls. In May 2011, specimens of most macroalgal species showed 137Cs levels greater than 3,000 Bq kg?1 at Shioyazaki and Nagasaki. The highest 137Cs level recorded 7371.20 ± 173.95 Bq kg?1 in Undaria pinnatifida (Harvey) Suringar on 2 May 2011, whereas seawater collected at the same time at Shioyazaki and Nagasaki measured 8.41 ± 3.21 and 9.74 ± 3.43 Bq L?1, respectively. The concentration factor of marine macroalgae was estimated to be ca. 8–50, depending on taxa and considering a weight ratio of wet/dry samples of ca. 10. 137Cs level declined remarkably during the following 5–6 months. In contrast, the 137Cs level remained rather stable during the following 12–16 months, and maintained the range of 10–110 Bq kg?1. Contamination was still detectable in many samples in March 2013, 24 months after the most significant pollution.  相似文献   
989.
Recent advances in quantitative proteomic technology have enabled the large-scale validation of biomarkers. We here performed a quantitative proteomic analysis of membrane fractions from colorectal cancer tissue to discover biomarker candidates, and then extensively validated the candidate proteins identified. A total of 5566 proteins were identified in six tissue samples, each of which was obtained from polyps and cancer with and without metastasis. GO cellular component analysis predicted that 3087 of these proteins were membrane proteins, whereas TMHMM algorithm predicted that 1567 proteins had a transmembrane domain. Differences were observed in the expression of 159 membrane proteins and 55 extracellular proteins between polyps and cancer without metastasis, while the expression of 32 membrane proteins and 17 extracellular proteins differed between cancer with and without metastasis. A total of 105 of these biomarker candidates were quantitated using selected (or multiple) reaction monitoring (SRM/MRM) with stable synthetic isotope-labeled peptides as an internal control. The results obtained revealed differences in the expression of 69 of these proteins, and this was subsequently verified in an independent set of patient samples (polyps (n = 10), cancer without metastasis (n = 10), cancer with metastasis (n = 10)). Significant differences were observed in the expression of 44 of these proteins, including ITGA5, GPRC5A, PDGFRB, and TFRC, which have already been shown to be overexpressed in colorectal cancer, as well as proteins with unknown function, such as C8orf55. The expression of C8orf55 was also shown to be high not only in colorectal cancer, but also in several cancer tissues using a multicancer tissue microarray, which included 1150 cores from 14 cancer tissues. This is the largest verification study of biomarker candidate membrane proteins to date; our methods for biomarker discovery and subsequent validation using SRM/MRM will contribute to the identification of useful biomarker candidates for various cancers. Data are available via ProteomeXchange with identifier PXD000851.Recent advances in proteomic technology have contributed to the identification of biomarkers for various diseases. Improvements in LC-MS technology have led to an increase in the number of proteins that have been identified. In addition, a stable isotopic labeling method using isobaric tag for relative and absolute quantitation (iTRAQ)1 and stable isotope labeling by amino acids in cell culture has enabled the quantitative analysis of multiple samples (1, 2). Therefore, a large number of proteins have already been identified as biomarker candidates; however, only a few of these have been used in practical applications because most have not yet progressed to the validation stage, in which potential biomarker candidates are quantified on a large scale. The validation of biomarker candidates is generally accomplished using Western blotting and enzyme-linked immunosorbent assays (ELISA) if specific and well-characterized antibodies for these candidates are available. However, highly specific antibodies are not currently available for most novel biomarker candidate proteins, and it takes a significant amount of time and money to obtain these antibodies and optimize ELISA assay systems for many candidates; therefore, another validation assay system needs to be developed. Selected (or multiple) reaction monitoring (SRM or MRM) was previously shown to be a potentially effective method for the validation of biomarker candidates (35). The SRM/MRM assay can measure multiple targets at high sensitivity and throughput without antibodies; hence, it is useful for initial quantitative evaluations and the large-scale validation of biomarker candidates, which defines validation of hundreds of biomarker candidate proteins simultaneously.In addition to these technical improvements, the fractionation process also plays an important role in proteome analysis for biomarker discovery. This procedure very effectively analyzes the proteomes of specific cellular compartments or organelles in detail, which reduces sample complexity. The preparation of a membrane fraction was previously shown to be useful for identifying membrane proteins that are generally expressed at relatively low levels. Membrane proteins play critical roles in many biological functions, such as signal transduction, cell-cell interactions, and ion transport, account for ∼38% of all proteins encoded by the mammalian genome and more than one-third of biomarker candidates, and are also potential targets for drug therapy (6, 7). Therefore, membrane proteome analysis is important for biomarker discovery. However, difficulties have been associated with extracting and solubilizing membrane proteins and subsequent protease digestion. Many procedures have consequently been developed to improve the solubilization and digestion of membrane proteins (811), and a protocol using phase transfer surfactant (PTS) was shown to be suitable for membrane proteomics using LC-MS/MS (12, 13).The selection of a control group for comparisons is also important for identifying potential biomarkers. Tissue samples from cancer patients have been used in many studies to discover biomarker candidates by proteomic analysis. Previous studies, including our own, attempted to compare cancer tissues with matched normal tissue (1417). However, marked differences have been reported in the histology, genetics, and proteomics of normal and cancer tissues, and many biomarker candidates have been identified, by making it difficult to narrow down more reliable candidates for further validation. Lazebnik recently emphasized that the features of malignant, but not benign tumors could be used as a hallmark of cancer (18), and also that premalignant lesions were more appropriate controls for cancer tissue than normal tissue for the identification of biomarker candidates involved in cancer progression. Moreover, comparisons of cancer with and without metastasis may also assist in the discovery of biomarker candidates involved in cancer metastasis. Therefore, the identification of biomarker candidates that can be used to diagnose and determine the prognosis of cancer should become more effective by comparing cancer tissues at different stages, including benign tumors.We performed a shotgun proteomic analysis of membrane fractions prepared from colorectal cancer tissue and benign polyps in the present study to identify biomarker candidates for the diagnosis and treatment of cancer. We identified a large number of biomarker candidate proteins associated with the progression of colon cancer by using membrane protein extraction with PTS followed by iTRAQ labeling. SRM/MRM confirmed the altered expression of these biomarker candidates, and these results were further verified using an independent set of tissue samples. A protein with uncharacterized function, C8orf55, was also validated with a tissue microarray that included various types of cancers.  相似文献   
990.
The localization of DEAD (Asp-Glu-Ala-Asp) box helicase 6 (DDX6) in spermatogenic cells from the mouse, rat, and guinea pig was studied by immunofluorescence (IF) and immunoelectron microscopy (IEM). Spermatogenic cells from these species yielded similar DDX6 localization pattern. IF microscopy results showed that DDX6 localizes to both the nucleus and cytoplasm. In the cytoplasm of spermatogenic cells, diffuse cytosolic and discrete granular staining was observed, with the staining pattern changing during cell differentiation. IEM revealed that DDX6 localized to the five different types of nuage structures and non-nuage structures, including small granule aggregate and late spermatid annuli. Nuclear labeling was strongest in leptotene and zygotene spermatocytes and moderately strong in the nuclear pocket of late spermatids. DDX6 also localized to the surface of outer dense fibers, which comprise of flagella. The results show that DDX6 is present in nuage and non-nuage structures as well as nuclei, suggesting that DDX6 has diverse functions in spermatogenic cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号