首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   777篇
  免费   81篇
  2022年   4篇
  2021年   13篇
  2020年   15篇
  2019年   19篇
  2018年   12篇
  2017年   14篇
  2016年   35篇
  2015年   37篇
  2014年   33篇
  2013年   51篇
  2012年   49篇
  2011年   58篇
  2010年   29篇
  2009年   25篇
  2008年   36篇
  2007年   33篇
  2006年   33篇
  2005年   29篇
  2004年   43篇
  2003年   25篇
  2002年   28篇
  2001年   14篇
  2000年   22篇
  1999年   13篇
  1998年   16篇
  1997年   4篇
  1996年   9篇
  1995年   9篇
  1994年   5篇
  1993年   7篇
  1992年   17篇
  1991年   12篇
  1990年   12篇
  1989年   14篇
  1988年   11篇
  1987年   10篇
  1986年   13篇
  1985年   3篇
  1984年   3篇
  1983年   4篇
  1982年   5篇
  1980年   2篇
  1979年   2篇
  1978年   5篇
  1977年   5篇
  1976年   2篇
  1975年   2篇
  1972年   5篇
  1970年   2篇
  1968年   2篇
排序方式: 共有858条查询结果,搜索用时 265 毫秒
11.
12.
13.
14.
Eighteen hours of immobilization stress, accompanied by food and water deprivation, increased liver metallothionein (MT) but decreased kidney MT levels. Food and water deprivation alone had a significant effect only on liver MT levels. In contrast, stress and food and water deprivation increased both liver and kidney lipid peroxidation levels, indicating that the relationship between MT and lipid peroxidation levels (an index of free radical production) is unclear. Adrenalectomy increased both liver and kidney MT levels in basal conditions, whereas the administration of corticosterone in the drinking water completely reversed the effect of adrenalectomy, indicating an inhibitory role of glucocorticoids on MT regulation in both tissues. Changes in glutathione (GSH) metabolism produced significant effects on kidney MT levels. Thus, the administration of buthionine sulfoximine, an inhibitor of GSH synthesis, decreased kidney GSH and increased kidney MT content, suggesting that increased cysteine pools because of decreased GSH synthesis might increase kidney MT levels through an undetermined mechanism as it appears to be the case in the liver. However, attempts to increase kidney MT levels by the administration of cysteine or GSH were unsuccesful, in contrast to what is known for the liver. The present results suggest that there are similarities but also substantial differences between liver and kidney MT regulation in these experimental conditions.  相似文献   
15.
The nucleotide sequence (6138 bp) of a microaerobically inducible region (hupV/VI) from the Rhizobium leguminosarum bv. viciae hydrogenase gene cluster has been determined. Six genes, arranged as a single operon, were identified, and designated hypA, B, F, C, D and E based on the sequence similarities of all of them, except hypF, to genes from the hydrogenase pleiotropic operon (hyp) from Escherichia coli. The gene products from hypBFCDE were identified by in vivo expression analysis in E. coli, and their molecular sizes were consistent with those predicted from the nucleotide sequence. Transposon Tn5 insertions into hypB, hypF, hypD and hypE resulted in R. leguminosarum mutants that lacked any hydrogenase activity in symbiosis with peas, but still were able to synthesize the polypeptide for the hydrogenase large subunit. The gene products HypA, HypB, HypF and HypD contained CX2C motifs characteristic of metal-binding proteins. In addition, HypB bore a long histidine-rich stretch of amino acids near the N-terminus, suggesting a possible role in nickel binding for this protein. The gene product HypF, which was translationally coupled to HypB, presented two cysteine motifs (CX2CX81CX2C) with a capacity to form zinc finger-like structures in the N-terminal third of the protein. A role in nickel metabolism in relation to hydrogenase synthesis is postulated for proteins HypB and HypF.  相似文献   
16.
The elimination of transformed and viral infected cells by natural killer (NK) cells requires a specialized junction between NK and target cells, denominated immunological synapse (IS). After initial recognition, the IS enables the directed secretion of lytic granules content into the susceptible target cell. The lymphocyte function-associated antigen (LFA)-1 regulates NK effector function by enabling NK-IS assembly and maturation. The pathways underlying LFA-1 accumulation at the IS in NK cells remained uncharacterized. A kinase anchoring protein 350 (AKAP350) is a centrosome/Golgi-associated protein, which, in T cells, participates in LFA-1 activation by mechanisms that have not been elucidated. We first evaluated AKAP350 participation in NK cytolytic activity. Our results showed that the decrease in AKAP350 levels by RNA interference (AKAP350KD) inhibited NK-YTS cytolytic activity, without affecting conjugate formation. The impairment of NK effector function in AKAP350KD cells correlated with decreased LFA-1 clustering and defective IS maturation. AKAP350KD cells that were exclusively activated via LFA-1 showed impaired LFA-1 organization and deficient lytic granule translocation as well. In NK AKAP350KD cells, activation signaling through Vav1 was preserved up to 10 min of interaction with target cells, but significantly decreased afterwards. Experiments in YTS and in ex vivo NK cells identified an intracellular pool of LFA-1, which partially associated with the Golgi apparatus and, upon NK activation, redistributed to the IS in an AKAP350-dependent manner. The analysis of Golgi organization indicated that the decrease in AKAP350 expression led to the disruption of the Golgi integrity in NK cells. Alteration of Golgi function by BFA treatment or AKAP350 delocalization from this organelle also led to impaired LFA-1 localization at the IS. Therefore, this study characterizes AKAP350 participation in the modulation of NK effector function, revealing the existence of a Golgi-dependent trafficking pathway for LFA-1, which is relevant for LFA-1 organization at NK-lytic IS.  相似文献   
17.
18.
The NADH oxidase activity of isolated vesicles of soybean (Glycine max cv Williams 82) plasma membranes and elongation growth of 1-cm-long hypocotyl segments were stimulated by auxins (indole-3-acetic acid or 2,4-dichlorophenoxyacetic acid [2,4-D]). The auxin-induced stimulations of both NADH oxidase and growth were prevented by the thiol reagents N-ethylmaleimide, p-chloromercuribenzoate, 5,5[prime]-dithiobis(2-nitrophenylbenzoic acid), dithiothreitol, and reduced glutathione. These same reagents largely were without effect on or stimulated slightly the basal levels of NADH oxidase and growth when assayed in the absence of auxins. In the presence of dithiothreitol or reduced glutathione, both 2,4-D and indole-3-acetic acid either failed to stimulate or inhibited the NADH oxidase activity. The rapidity of the response at a given concentration of thiol reagent and the degree of inhibition of the 2,4-D-induced NADH oxidase activity were dependent on order of reagent addition. If the thiol reagents were added first, auxin stimulations were prevented. If auxins were added first, the inhibitions by the thiol reagents were delayed or higher concentrations of thiol reagents were required to achieve inhibition. The results demonstrate a fundamental difference between the auxin-stimulated and the constitutive NADH oxidase activities of soybean plasma membranes that suggest an involvement of active-site thiols in the auxin-stimulated but not in the constitutive activity.  相似文献   
19.
20.
The structure of the potassium channel blocker agitoxin 2 was solved by solution NMR methods. The structure consists of a triple-stranded antiparallel beta-sheet and a single helix covering one face of the beta-sheet. The cysteine side chains connecting the beta-sheet and the helix form the core of the molecule. One edge of the beta-sheet and the adjacent face of the helix form the interface with the Shaker K+ channel. The fold of agitoxin is homologous to the previously determined folds of scorpion venom toxins. However, agitoxin 2 differs significantly from the other channel blockers in the specificity of its interactions. This study was thus focused on a precise characterization of the surface residues at the face of the protein interacting with the Shaker K+ channel. The rigid toxin molecule can be used to estimate dimensions of the potassium channel. Surface-exposed residues, Arg24, Lys27, and Arg31 of the beta-sheet, have been identified from mutagenesis studies as functionally important for blocking the Shaker K+ channel. The sequential and spatial locations of Arg24 and Arg31 are not conserved among the homologous toxins. Knowledge on the details of the channel-binding sites of agitoxin 2 formed a basis for site-directed mutagenesis studies of the toxin and the K+ channel sequences. Observed interactions between mutated toxin and channel are being used to elucidate the channel structure and mechanisms of channel-toxin interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号